Difference: Pseudomanifold10Vertex (60 vs. 61)

Revision 612018-03-18 - EdwardSwartz

Line: 1 to 1
 
META TOPICPARENT name="WebHome"
-- Main.ebs22 - 2016-01-07 -- Main.srs74 - 2015-12-22

Pseudomanifold Triangulations on 10 Vertices

Complex: 10_a_b_c_d_0_e_0_f_0_g

  • a= number of vertex links homeomorphic to the sphere
  • b= number of vertex links homeomorphic to the real projective plane
  • c= number of vertex links homeomorphic to the torus
  • d= number of vertex links homeomorphic to the Klein bottle
  • e= number of vertex links homeomorphic to the genus three nonorientable surface
  • f= number of vertex links homeomorphic to the genus four nonorientable surface
  • g= number of vertex links homeomorphic to the genus five nonorientable surface

χ - Euler characteristic of all the complexes on 10 vertices with the given vertex links.

Triangulations - The number of triangulations with the given vertex links on 10 vertices. Clicking on the link gives all of the triangulations.

minG2 - The minimum g2 over all triangulations with the given vertex links on 10 vertices. Clicking the link gives a list of the complexes which realize the minimum g2.

H1, H2, H3 - Integer homology groups of all of the triangulations with the given vertex links on 10 vertices. The homology group is trivial if blank. For H2 the shorthand n,[2] stands for the direct sum of Z/2Z and the free abelian group of rank n.

Γ - Γ is the minimum of g2 over all triangulations of a three-dimensional normal pseudomanifold with the given singular vertices. A letter in this column indicates that minG2=Γ and the proof is indicated below. A superscript ' indicates that Γ=minG2-1 and 11 vertices are needed to realize Γ.

  • a - For any subcomplex Δ' of Δ, g2(Δ) ≥ g2 (Δ'). Usually v is a vertex and Δ'=st(v), so g2(Δ) ≥ g2 (st v) = g2 (link v).
  • b - If n is the number of singular vertices, then g2 ≥ 2 χ - ( n-3 choose 3). If n-3 < 3, then the binomial coefficient is interepreted as zero.
  • c - If Δ has 8 singular vertices and m of them are Klein bottles, then g2 ≥ 2 χ - 10 + (m/3)
  • d - If Δ has 8 singular vertices and any of them are real projective planes, then g2 ≥ 2 χ - 7
  • e - If Δ has 8 singular vertices including 3 projective planes and 2 Klein bottles, then g2 ≥ 2 χ - 5
  • f - Other

f-vector - A nonempty entry indicates that all possible f-vectors for complexes with the given singular vertices is known.

Except where otherwise noted, the f-vectors are characterized through h- and g-vectors by, h0=1, h4=1-χ, h3 - h1 = 2 χ, h1 ≥ f0-4, and Γ ≤ g2 ≤ (g1 +1 choose 2), where f0 is the minimum number of vertices required for a complex with the given singularities.

  • The first entry is the minimum number of vertices possible for the given singularities
  • 10 indicates that the possible f-vectors for PL-homeomorphic complexes for every complex in the group are the same and equal all possible f-vectors for that particular group of singularities
  • 10, # indicates that the possible f-vectors of complexes PL-homeomorphic to complex # equals all possible f-vectors for that group of singularities.
  • 10, #, β There is no complex with g-vector (5, Γ) for these singularities.
  • 9, # indicates that the possible f-vectors of complexes PL-homeomorphic to complex # at http://www.math.cornell.edu/~takhmejanov/pseudoManifolds.html with the same singularities equals all possible f-vectors for that group of singularities.
  • 9, #1, α There is no complex with g-vector (4,6) for these singularities.
  • 8, N# indicates that the possible f-vectors of complexes PL-homeomorphic to complex N# in "Three-Dimensional Pseudomanifolds on Eight Vertices", B. Datta and N. Nilakantan, Indian J. of Mathematics and Mathematical Sciences, 2008, equals all possible f-vectors for that group of singularities.
  • 7, The one-vertex suspension of the six-vertex triangulation of the real projective plane can be used to prove that the f-vectors of the suspension of the real projective plane has the same f-vectors as all complexes with exactly two singular vertices each with link homeomorphic to the real projective plane.
  • 5, f-vectors of three-manifolds equal all possible f-vectors of S3.

- * indicates that all complexes in this row are known to be PL-homeomorphic.

# Complex χ Triangulations minG2 H1 H2 H3 Γ f-vector
<-- -->
Sorted ascending
delta epsilon
  10_0_0_0_0_0_0_0_10 20 5 15   19,[2]   f 10      
  10_0_0_0_0_0_0_0_6_0_4 22 1 15   21,[2]   a 10 *    
  10_0_0_0_0_0_3_0_6_0_1 19 2 15   18,[2]   a 10      
  10_0_0_0_1_0_5_0_3_0_1 17 1 15   16,[2]   a 10 *    
  10_0_0_0_1_0_7_0_1_0_1 16 1 15   15,[2]   a 10 *    
  10_0_0_0_3_0_3_0_3_0_1 16 1 15   15,[2]   a 10 *    
  10_0_0_0_3_0_5_0_1_0_1 15 1 15   14,[2]   a 10 *    
  10_0_0_0_4_0_3_0_2_0_1 15 3 15   14,[2]   a 10      
  10_0_0_0_4_0_5_0_0_0_1 14 5 15   13,[2]   a 10      
  10_0_0_0_5_0_3_0_1_0_1 14 5 15   13,[2]   a 10      
  10_0_0_0_6_0_3_0_0_0_1 13 7 15   12,[2]   a 10      
  10_0_0_0_7_0_1_0_1_0_1 13 4 15   12,[2]   a 10      
  10_0_0_1_1_0_3_0_4_0_1 17 2 15   16,[2]   a 10      
  10_0_0_1_1_0_5_0_2_0_1 16 2 15   15,[2]   a 10      
  10_0_0_1_2_0_5_0_1_0_1 15 2 15   14,[2]   a 10      
  10_0_0_1_3_0_3_0_2_0_1 15 5 15   14,[2]   a 10      
  10_0_0_1_3_0_5_0_0_0_1 14 7 15   13,[2]   a 10      
  10_0_0_1_4_0_1_0_3_0_1 15 1 15   14,[2]   a 10 *    
  10_0_0_1_4_0_3_0_1_0_1 14 10 15   13,[2]   a 10      
  10_0_0_1_5_0_1_0_2_0_1 14 2 15   13,[2]   a 10      
  10_0_0_1_5_0_3_0_0_0_1 13 11 15   12,[2]   a 10      
  10_0_0_1_6_0_1_0_1_0_1 13 1 15   12,[2]   a 10 *    
  10_0_0_1_7_0_1_0_0_0_1 12 1 15   11,[2]   a 10 *    
  10_0_0_2_2_0_3_0_2_0_1 15 1 15   14,[2]   a 10 *    
  10_0_0_2_2_0_5_0_0_0_1 14 2 15   13,[2]   a 10      
  10_0_0_2_3_0_3_0_1_0_1 14 8 15   13,[2]   a 10      
  10_0_0_2_4_0_1_0_2_0_1 14 1 15   13,[2]   a 10 *    
  10_0_0_2_4_0_3_0_0_0_1 13 5 15   12,[2]   a 10      
  10_0_0_2_5_0_1_0_1_0_1 13 1 15   12,[2]   a 10 *    
  10_0_0_3_2_0_3_0_1_0_1 14 1 15   13,[2]   a 10 *    
  10_0_0_3_3_0_3_0_0_0_1 13 10 15   12,[2]   a 10      
  10_0_0_3_4_0_1_0_1_0_1 13 4 15   12,[2]   a 10      
  10_0_0_3_5_0_1_0_0_0_1 12 4 15   11,[2]   a 10      
  10_0_0_4_0_0_5_0_0_0_1 14 2 15   13,[2]   a 10      
  10_0_0_4_1_0_3_0_1_0_1 14 2 15   13,[2]   a 10      
  10_0_0_4_2_0_3_0_0_0_1 13 2 15   12,[2]   a 10      
  10_0_0_4_3_0_1_0_1_0_1 13 3 15   12,[2]   a 10      
  10_0_0_4_4_0_1_0_0_0_1 12 5 15   11,[2]   a 10      
  10_0_0_5_0_0_3_0_1_0_1 14 1 15   13,[2]   a 10 *    
  10_0_0_5_1_0_3_0_0_0_1 13 3 15   12,[2]   a 10      
  10_0_0_5_3_0_1_0_0_0_1 12 1 15   11,[2]   a 10 *    
  10_0_1_0_1_0_6_0_1_0_1 15 2 15   14,[2]   a 10      
  10_0_1_0_2_0_6_0_0_0_1 14 8 15   13,[2]   a 10      
  10_0_1_0_3_0_4_0_1_0_1 14 6 15   13,[2]   a 10      
  10_0_1_0_4_0_2_0_2_0_1 14 3 15   13,[2]   a 10      
  10_0_1_0_4_0_4_0_0_0_1 13 19 15   12,[2]   a 10      
  10_0_1_0_5_0_2_0_1_0_1 13 7 15   12,[2]   a 10      
  10_0_1_0_6_0_0_0_2_0_1 13 2 15   12,[2]   a 10      
  10_0_1_0_6_0_2_0_0_0_1 12 4 15   11,[2]   a 10      
  10_0_1_0_7_0_0_0_1_0_1 12 1 15   11,[2]   a 10 *    
  10_0_1_0_8_0_0_0_0_0_1 11 10 15   10,[2]   a 10      
  10_0_1_1_0_0_6_0_1_0_1 15 1 15   14,[2]   a 10 *    
  10_0_1_1_1_0_4_0_2_0_1 15 1 15   14,[2]   a 10 *    
  10_0_1_1_2_0_4_0_1_0_1 14 8 15   13,[2]   a 10      
  10_0_1_1_3_0_2_0_2_0_1 14 2 15   13,[2]   a 10      
  10_0_1_1_3_0_4_0_0_0_1 13 13 15   12,[2]   a 10      
  10_0_1_1_4_0_2_0_1_0_1 13 17 15   12,[2]   a 10      
  10_0_1_1_5_0_0_0_2_0_1 13 3 15   12,[2]   a 10      
  10_0_1_1_5_0_2_0_0_0_1 12 13 15   11,[2]   a 10      
  10_0_1_1_7_0_0_0_0_0_1 11 2 15   10,[2]   a 10      
  10_0_1_2_1_0_2_0_3_0_1 15 1 15   14,[2]   a 10 *    
  10_0_1_2_1_0_4_0_1_0_1 14 6 15   13,[2]   a 10      
  10_0_1_2_2_0_2_0_2_0_1 14 3 15   13,[2]   a 10      
  10_0_1_2_2_0_4_0_0_0_1 13 10 15   12,[2]   a 10      
  10_0_1_2_3_0_2_0_1_0_1 13 12 15   12,[2]   a 10      
  10_0_1_2_4_0_0_0_2_0_1 13 3 15   12,[2]   a 10      
  10_0_1_2_4_0_2_0_0_0_1 12 15 15   11,[2]   a 10      
  10_0_1_2_5_0_0_0_1_0_1 12 1 15   11,[2]   a 10      
  10_0_1_2_6_0_0_0_0_0_1 11 5 15   10,[2]   a 10      
  10_0_1_3_0_0_4_0_1_0_1 14 1 15   13,[2]   a 10 *    
  10_0_1_3_1_0_2_0_2_0_1 14 2 15   13,[2]   a 10      
  10_0_1_3_2_0_2_0_1_0_1 13 5 15   12,[2]   a 10      
  10_0_1_3_3_0_0_0_2_0_1 13 3 15   12,[2]   a 10      
  10_0_1_3_3_0_2_0_0_0_1 12 14 15   11,[2]   a 10      
  10_0_1_4_1_0_2_0_1_0_1 13 2 15   12,[2]   a 10      
  10_0_1_4_2_0_0_0_2_0_1 13 1 15   12,[2]   a 10 *    
  10_0_1_4_2_0_2_0_0_0_1 12 12 15   11,[2]   a 10      
  10_0_1_4_4_0_0_0_0_0_1 11 31 15   10,[2]   a 10      
  10_0_1_5_3_0_0_0_0_0_1 11 7 15   10,[2]   a 10      
  10_0_2_0_2_0_3_0_2_0_1 14 1 15   13,[2]   a 10 *    
  10_0_2_0_2_0_5_0_0_0_1 13 2 15   12,[2]   a 10      
  10_0_2_0_3_0_3_0_1_0_1 13 5 15   12,[2]   a 10      
  10_0_2_0_4_0_3_0_0_0_1 12 21 15   11,[2]   a 10      
  10_0_2_0_5_0_1_0_1_0_1 12 4 15   11,[2]   a 10      
  10_0_2_0_6_0_1_0_0_0_1 11 26 15   10,[2]   a 10      
  10_0_2_1_1_0_5_0_0_0_1 13 3 15   12,[2]   a 10      
  10_0_2_1_2_0_3_0_1_0_1 13 12 15   12,[2]   a 10      
  10_0_2_1_3_0_1_0_2_0_1 13 2 15   12,[2]   a 10      
  10_0_2_1_3_0_3_0_0_0_1 12 19 15   11,[2]   a 10      
  10_0_2_1_4_0_1_0_1_0_1 12 6 15   11,[2]   a 10      
  10_0_2_1_5_0_1_0_0_0_1 11 5 15   10,[2]   a 10      
  10_0_2_2_0_0_3_0_2_0_1 14 1 15   13,[2]   a 10 *    
  10_0_2_2_1_0_3_0_1_0_1 13 4 15   12,[2]   a 10      
  10_0_2_2_2_0_1_0_2_0_1 13 1 15   12,[2]   a 10 *    
  10_0_2_2_2_0_3_0_0_0_1 12 15 15   11,[2]   a 10      
  10_0_2_2_3_0_1_0_1_0_1 12 12 15   11,[2]   a 10      
  10_0_2_2_4_0_1_0_0_0_1 11 19 15   10,[2]   a 10      
  10_0_2_3_1_0_3_0_0_0_1 12 4 15   11,[2]   a 10      
  10_0_2_3_3_0_1_0_0_0_1 11 22 15   10,[2]   a 10      
  10_0_2_4_0_0_3_0_0_0_1 12 2 15   11,[2]   a 10      
  10_0_2_4_2_0_1_0_0_0_1 11 45 15   10,[2]   a 10      
  10_0_2_5_1_0_1_0_0_0_1 11 2 15   10,[2]   a 10      
  10_0_3_0_0_0_6_0_0_0_1 13 1 15   12,[2]   a 10 *    
  10_0_3_0_1_0_4_0_1_0_1 13 1 15   12,[2]   a 10 *    
  10_0_3_0_2_0_4_0_0_0_1 12 5 15   11,[2]   a 10      
  10_0_3_0_3_0_2_0_1_0_1 12 8 15   11,[2]   a 10      
  10_0_3_0_4_0_2_0_0_0_1 11 20 15   10,[2]   a 10      
  10_0_3_0_6_0_0_0_0_0_1 10 12 15   9,[2]   a 10      
  10_0_3_1_1_0_4_0_0_0_1 12 5 15   11,[2]   a 10      
  10_0_3_1_2_0_2_0_1_0_1 12 8 15   11,[2]   a 10      
  10_0_3_1_3_0_2_0_0_0_1 11 4 15   10,[2]   a 10      
  10_0_3_1_5_0_0_0_0_0_1 10 5 15   9,[2]   a 10      
  10_0_3_2_1_0_2_0_1_0_1 12 6 15   11,[2]   a 10      
  10_0_3_2_2_0_2_0_0_0_1 11 20 15   10,[2]   a 10      
  10_0_3_2_4_0_0_0_0_0_1 10 11 15   9,[2]   a 10      
  10_0_3_3_0_0_2_0_1_0_1 12 2 15   11,[2]   a 10      
  10_0_3_3_1_0_2_0_0_0_1 11 9 15   10,[2]   a 10      
  10_0_3_3_2_0_0_0_1_0_1 11 5 15   10,[2]   a 10      
  10_0_3_3_3_0_0_0_0_0_1 10 5 15   9,[2]   a 10      
  10_0_3_4_0_0_2_0_0_0_1 11 2 15   10,[2]   a 10      
  10_0_3_4_2_0_0_0_0_0_1 10 7 15   9,[2]   a 10      
  10_0_3_5_1_0_0_0_0_0_1 10 5 15   9,[2]   a 10      
  10_0_3_6_0_0_0_0_0_0_1 10 2 15   9,[2]   a 10      
  10_0_4_0_2_0_3_0_0_0_1 11 12 15   10,[2]   a 10      
  10_0_4_0_3_0_1_0_1_0_1 11 5 15   10,[2]   a 10      
  10_0_4_0_4_0_1_0_0_0_1 10 21 15   9,[2]   a 10      
  10_0_4_1_1_0_3_0_0_0_1 11 3 15   10,[2]   a 10      
  10_0_4_1_3_0_1_0_0_0_1 10 7 15   9,[2]   a 10      
  10_0_4_2_0_0_3_0_0_0_1 11 1 15   10,[2]   a 10 *    
  10_0_4_2_1_0_1_0_1_0_1 11 1 15   10,[2]   a 10 *    
  10_0_4_2_2_0_1_0_0_0_1 10 1 15   9,[2]   a 10 *    
  10_0_4_3_0_0_1_0_1_0_1 11 1 15   10,[2]   a 10 *    
  10_0_4_3_1_0_1_0_0_0_1 10 3 15   9,[2]   a 10      
  10_0_4_4_0_0_1_0_0_0_1 10 7 15   9,[2]   a 10      
  10_0_5_0_0_0_4_0_0_0_1 11 3 15   10,[2]   a 10      
  10_0_5_0_2_0_0_0_2_0_1 11 1 15   10,[2]   a 10 *    
  10_0_5_0_2_0_2_0_0_0_1 10 5 15   9,[2]   a 10      
  10_0_5_0_3_0_0_0_1_0_1 10 2 15   9,[2]   a 10      
  10_0_5_0_4_0_0_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_0_5_1_0_0_2_0_1_0_1 11 2 15   10,[2]   a 10      
  10_0_5_1_1_0_2_0_0_0_1 10 1 15   9,[2]   a 10 *    
  10_0_5_1_3_0_0_0_0_0_1 9 4 15   8,[2]   a 10      
  10_0_5_2_2_0_0_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_0_5_3_1_0_0_0_0_0_1 9 5 15   8,[2]   a 10      
  10_0_6_0_0_0_3_0_0_0_1 10 3 15   9,[2]   a 10      
  10_0_6_0_2_0_1_0_0_0_1 9 3 15   8,[2]   a 10      
  10_0_6_1_0_0_1_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_0_6_1_1_0_1_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_0_7_0_0_0_2_0_0_0_1 9 3 15   8,[2]   a 10      
  10_0_8_0_0_0_1_0_0_0_1 8 1 15   7,[2]   a 10 *    
  10_1_0_0_5_0_3_0_0_0_1 12 3 15   11,[2]   a 10      
  10_1_0_0_6_0_1_0_1_0_1 12 1 15   11,[2]   a 10 *    
  10_1_0_0_7_0_1_0_0_0_1 11 9 15   10,[2]   a 10      
  10_1_0_1_3_0_3_0_1_0_1 13 1 15   12,[2]   a 10 *    
  10_1_0_1_4_0_3_0_0_0_1 12 2 15   11,[2]   a 10      
  10_1_0_1_6_0_1_0_0_0_1 11 7 15   10,[2]   a 10      
  10_1_0_2_2_0_3_0_1_0_1 13 1 15   12,[2]   a 10 *    
  10_1_0_2_3_0_1_0_2_0_1 13 1 15   12,[2]   a 10 *    
  10_1_0_2_3_0_3_0_0_0_1 12 4 15   11,[2]   a 10      
  10_1_0_2_4_0_1_0_1_0_1 12 2 15   11,[2]   a 10      
  10_1_0_2_5_0_1_0_0_0_1 11 4 15   10,[2]   a 10      
  10_1_0_3_1_0_3_0_1_0_1 13 1 15   12,[2]   a 10 *    
  10_1_0_3_2_0_3_0_0_0_1 12 3 15   11,[2]   a 10      
  10_1_0_3_3_0_1_0_1_0_1 12 4 15   11,[2]   a 10      
  10_1_0_3_4_0_1_0_0_0_1 11 15 15   10,[2]   a 10      
  10_1_0_4_1_0_3_0_0_0_1 12 1 15   11,[2]   a 10 *    
  10_1_0_4_2_0_1_0_1_0_1 12 2 15   11,[2]   a 10      
  10_1_0_4_3_0_1_0_0_0_1 11 27 15   10,[2]   a 10      
  10_1_0_5_2_0_1_0_0_0_1 11 1 15   10,[2]   a 10 *    
  10_1_1_0_3_0_4_0_0_0_1 12 2 15   11,[2]   a 10      
  10_1_1_0_4_0_2_0_1_0_1 12 7 15   11,[2]   a 10      
  10_1_1_0_5_0_2_0_0_0_1 11 32 15   10,[2]   a 10      
  10_1_1_0_6_0_0_0_1_0_1 11 15 15   10,[2]   a 10      
  10_1_1_0_7_0_0_0_0_0_1 10 3 15   9,[2]   a 10      
  10_1_1_1_1_0_4_0_1_0_1 13 1 15   12,[2]   a 10 *    
  10_1_1_1_2_0_4_0_0_0_1 12 2 15   11,[2]   a 10      
  10_1_1_1_3_0_2_0_1_0_1 12 2 15   11,[2]   a 10      
  10_1_1_1_4_0_2_0_0_0_1 11 27 15   10,[2]   a 10      
  10_1_1_1_5_0_0_0_1_0_1 11 2 15   10,[2]   a 10      
  10_1_1_1_6_0_0_0_0_0_1 10 5 15   9,[2]   a 10      
  10_1_1_2_1_0_4_0_0_0_1 12 3 15   11,[2]   a 10      
  10_1_1_2_2_0_2_0_1_0_1 12 5 15   11,[2]   a 10      
  10_1_1_2_3_0_2_0_0_0_1 11 44 15   10,[2]   a 10      
  10_1_1_2_4_0_0_0_1_0_1 11 1 15   10,[2]   a 10 *    
  10_1_1_2_5_0_0_0_0_0_1 10 10 15   9,[2]   a 10      
  10_1_1_3_1_0_2_0_1_0_1 12 1 15   11,[2]   a 10 *    
  10_1_1_3_2_0_2_0_0_0_1 11 60 15   10,[2]   a 10      
  10_1_1_3_4_0_0_0_0_0_1 10 19 15   9,[2]   a 10      
  10_1_1_4_0_0_2_0_1_0_1 12 1 15   11,[2]   a 10 *    
  10_1_1_4_1_0_2_0_0_0_1 11 16 15   10,[2]   a 10      
  10_1_1_4_2_0_0_0_1_0_1 11 36 15   10,[2]   a 10      
  10_1_1_4_3_0_0_0_0_0_1 10 13 15   9,[2]   a 10      
  10_1_1_5_2_0_0_0_0_0_1 10 2 15   9,[2]   a 10      
  10_1_1_6_1_0_1_0_0 9 14302 9   8,[2]   a 10      
  10_1_2_0_3_0_3_0_0_0_1 11 12 15   10,[2]   a 10      
  10_1_2_0_4_0_1_0_1_0_1 11 12 15   10,[2]   a 10      
  10_1_2_0_5_0_1_0_0_0_1 10 43 15   9,[2]   a 10      
  10_1_2_1_1_0_3_0_1_0_1 12 3 15   11,[2]   a 10      
  10_1_2_1_2_0_3_0_0_0_1 11 5 15   10,[2]   a 10      
  10_1_2_1_3_0_1_0_1_0_1 11 4 15   10,[2]   a 10      
  10_1_2_1_4_0_1_0_0_0_1 10 37 15   9,[2]   a 10      
  10_1_2_2_1_0_3_0_0_0_1 11 17 15   10,[2]   a 10      
  10_1_2_2_2_0_1_0_1_0_1 11 14 15   10,[2]   a 10      
  10_1_2_2_3_0_1_0_0_0_1 10 68 15   9,[2]   a 10      
  10_1_2_3_0_0_3_0_0_0_1 11 1 15   10,[2]   a 10 *    
  10_1_2_3_1_0_1_0_1_0_1 11 8 15   10,[2]   a 10      
  10_1_2_3_2_0_1_0_0_0_1 10 50 15   9,[2]   a 10      
  10_1_2_4_1_0_1_0_0_0_1 10 22 15   9,[2]   a 10      
  10_1_2_5_0_0_1_0_0_0_1 10 6 15   9,[2]   a 10      
  10_1_3_0_1_0_4_0_0_0_1 11 3 15   10,[2]   a 10      
  10_1_3_0_3_0_2_0_0_0_1 10 42 15   9,[2]   a 10      
  10_1_3_0_4_0_0_0_1_0_1 10 12 15   9,[2]   a 10      
  10_1_3_0_5_0_0_0_0_0_1 9 12 15   8,[2]   a 10      
  10_1_3_1_2_0_2_0_0_0_1 10 26 15   9,[2]   a 10      
  10_1_3_1_3_0_0_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_1_3_1_4_0_0_0_0_0_1 9 9 15   8,[2]   a 10      
  10_1_3_2_1_0_0_0_2_0_1 11 1 15   10,[2]   a 10 *    
  10_1_3_2_1_0_2_0_0_0_1 10 10 15   9,[2]   a 10      
  10_1_3_2_2_0_0_0_1_0_1 10 7 15   9,[2]   a 10      
  10_1_3_2_3_0_0_0_0_0_1 9 19 15   8,[2]   a 10      
  10_1_3_3_0_0_2_0_0_0_1 10 17 15   9,[2]   a 10      
  10_1_3_3_1_0_0_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_1_3_3_2_0_0_0_0_0_1 9 12 15   8,[2]   a 10      
  10_1_3_4_0_0_0_0_1_0_1 10 8 15   9,[2]   a 10      
  10_1_3_4_1_0_0_0_0_0_1 9 2 15   8,[2]   a 10      
  10_1_4_0_1_0_3_0_0_0_1 10 7 15   9,[2]   a 10      
  10_1_4_0_2_0_1_0_1_0_1 10 3 15   9,[2]   a 10      
  10_1_4_0_3_0_1_0_0_0_1 9 45 15   8,[2]   a 10      
  10_1_4_1_1_0_1_0_1_0_1 10 6 15   9,[2]   a 10      
  10_1_4_1_2_0_1_0_0_0_1 9 21 15   8,[2]   a 10      
  10_1_4_2_1_0_1_0_0_0_1 9 11 15   8,[2]   a 10      
  10_1_4_3_0_0_1_0_0_0_1 9 5 15   8,[2]   a 10      
  10_1_5_0_0_0_2_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_1_5_0_1_0_2_0_0_0_1 9 17 15   8,[2]   a 10      
  10_1_5_0_2_0_0_0_1_0_1 9 6 15   8,[2]   a 10      
  10_1_5_0_3_0_0_0_0_0_1 8 4 15   7,[2]   a 10      
  10_1_5_1_2_0_0_0_0_0_1 8 12 15   7,[2]   a 10      
  10_1_5_2_1_0_0_0_0_0_1 8 6 15   7,[2]   a 10      
  10_1_5_3_0_0_0_0_0_0_1 8 2 15   7,[2]   a 10      
  10_1_6_0_0_0_1_0_1_0_1 9 6 15   8,[2]   a 10      
  10_1_6_0_1_0_1_0_0_0_1 8 8 15   7,[2]   a 10      
  10_2_0_0_5_0_1_0_1_0_1 11 3 15   10,[2]   a 10      
  10_2_0_0_6_0_0_0_0_0_2 11 2 15   10,[2]   a 10      
  10_2_0_0_6_0_1_0_0_0_1 10 2 15   9,[2]   a 10      
  10_2_0_1_4_0_1_0_1_0_1 11 1 15   10,[2]   a 10 *    
  10_2_0_1_5_0_1_0_0_0_1 10 7 15   9,[2]   a 10      
  10_2_0_2_1_0_2_0_3 12 5 15   11,[2]   c 10      
  10_2_0_2_2_0_3_0_0_0_1 11 1 15   10,[2]   a 10 *    
  10_2_0_2_3_0_1_0_1_0_1 11 1 15   10,[2]   a 10 *    
  10_2_0_2_4_0_1_0_0_0_1 10 3 15   9,[2]   a 10      
  10_2_0_3_1_0_3_0_0_0_1 11 4 15   10,[2]   a 10      
  10_2_0_3_2_0_1_0_1_0_1 11 16 15   10,[2]   a 10      
  10_2_0_3_3_0_1_0_0_0_1 10 6 15   9,[2]   a 10      
  10_2_0_4_0_0_3_0_0_0_1 11 3 15   10,[2]   a 10      
  10_2_0_4_1_0_1_0_1_0_1 11 9 15   10,[2]   a 10      
  10_2_0_4_2_0_0_0_0_0_2 11 5 15   10,[2]   a 10      
  10_2_0_4_2_0_1_0_0_0_1 10 4 15   9,[2]   a 10      
  10_2_1_0_2_0_3_0_2 11 3 15   10,[2]   d 10      
  10_2_1_0_3_0_1_0_3 11 1 15   10,[2]   d 10 *    
  10_2_1_0_4_0_2_0_0_0_1 10 21 15   9,[2]   a 10      
  10_2_1_0_5_0_0_0_1_0_1 10 3 15   9,[2]   a 10      
  10_2_1_1_1_0_3_0_2 11 6 15   10,[2]   d 10      
  10_2_1_1_1_0_4_0_0_0_1 11 1 15   10,[2]   a,d 10 *    
  10_2_1_1_2_0_1_0_3 11 2 15   10,[2]   d 10      
  10_2_1_1_3_0_2_0_0_0_1 10 11 15   9,[2]   a 10      
  10_2_1_1_5_0_0_0_0_0_1 9 11 15   8,[2]   a 10      
  10_2_1_2_0_0_3_0_2 11 4 15   10,[2]   d 10      
  10_2_1_2_1_0_1_0_3 11 8 15   10,[2]   d 10      
  10_2_1_2_2_0_2_0_0_0_1 10 11 15   9,[2]   a 10      
  10_2_1_2_3_0_0_0_1_0_1 10 4 15   9,[2]   a 10      
  10_2_1_2_4_0_0_0_0_0_1 9 16 15   8,[2]   a 10      
  10_2_1_3_1_0_2_0_0_0_1 10 13 15   9,[2]   a 10      
  10_2_1_3_2_0_0_0_1_0_1 10 2 15   9,[2]   a 10      
  10_2_1_3_3_0_0_0_0_0_1 9 18 15   8,[2]   a 10      
  10_2_1_4_0_0_2_0_0_0_1 10 4 15   9,[2]   a 10      
  10_2_1_4_1_0_0_0_1_0_1 10 3 15   9,[2]   a 10      
  10_2_1_4_2_0_0_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_2_2_0_1_0_2_0_3 11 1 15   10,[2]   d 10 *    
  10_2_2_0_2_0_3_0_0_0_1 10 4 15   9,[2]   a 10      
  10_2_2_0_3_0_1_0_1_0_1 10 4 15   9,[2]   a 10      
  10_2_2_0_4_0_1_0_0_0_1 9 23 15   8,[2]   a 10      
  10_2_2_1_1_0_3_0_0_0_1 10 1 15   9,[2]   a 10 *    
  10_2_2_1_2_0_1_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_2_2_1_3_0_1_0_0_0_1 9 38 15   8,[2]   a 10      
  10_2_2_2_0_0_3_0_0_0_1 10 1 15   9,[2]   a 10 *    
  10_2_2_2_1_0_1_0_1_0_1 10 2 15   9,[2]   a 10      
  10_2_2_2_2_0_1_0_0_0_1 9 41 15   8,[2]   a 10      
  10_2_2_3_0_0_1_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_2_2_3_1_0_1_0_0_0_1 9 18 15   8,[2]   a 10      
  10_2_3_0_2_0_2_0_0_0_1 9 22 15   8,[2]   a 10      
  10_2_3_0_3_0_0_0_1_0_1 9 6 15   8,[2]   a 10      
  10_2_3_0_4_0_0_0_0_0_1 8 10 15   7,[2]   a 10      
  10_2_3_1_1_0_2_0_0_0_1 9 5 15   8,[2]   a 10      
  10_2_3_1_2_0_0_0_1_0_1 9 1 15   8,[2]   a 10 *    
  10_2_3_1_3_0_0_0_0_0_1 8 60 15   7,[2]   a 10      
  10_2_3_2_0_0_2_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_2_3_2_2_0_0_0_0_0_1 8 33 15   7,[2]   a 10      
  10_2_3_3_1_0_0_0_0_0_1 8 5 15   7,[2]   a 10      
  10_2_4_0_0_0_3_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_2_4_0_1_0_1_0_1_0_1 9 9 15   8,[2]   a 10      
  10_2_4_0_2_0_1_0_0_0_1 8 27 15   7,[2]   a 10      
  10_2_4_1_1_0_1_0_0_0_1 8 32 15   7,[2]   a 10      
  10_2_4_2_0_0_1_0_0_0_1 8 16 15   7,[2]   a 10      
  10_2_5_0_0_0_2_0_0_0_1 8 3 15   7,[2]   a 10      
  10_2_5_0_1_0_0_0_1_0_1 8 1 15   7,[2]   a 10 *    
  10_2_5_0_2_0_0_0_0_0_1 7 8 15   6,[2]   a 10      
  10_2_5_1_1_0_0_0_0_0_1 7 12 15   6,[2]   a 10      
  10_2_5_2_0_0_0_0_0_0_1 7 10 15   6,[2]   a 10      
  10_2_6_0_0_0_1_0_0_0_1 7 10 15   6,[2]   a 10      
  10_2_7_0_0_0_0_0_0_0_1 6 3 15   5,[2]   a 10      
  10_3_0_1_4_0_1_0_0_0_1 9 5 15   8,[2]   a 10      
  10_3_0_2_3_0_1_0_0_0_1 9 4 15   8,[2]   a 10      
  10_3_0_3_2_0_1_0_0_0_1 9 2 15   8,[2]   a 10      
  10_3_1_0_3_0_2_0_0_0_1 9 2 15   8,[2]   a 10      
  10_3_1_1_2_0_2_0_0_0_1 9 2 15   8,[2]   a 10      
  10_3_1_1_4_0_0_0_0_0_1 8 27 15   7,[2]   a,b 10      
  10_3_1_2_1_0_2_0_0_0_1 9 2 15   8,[2]   a 10      
  10_3_1_2_3_0_0_0_0_0_1 8 15 15   7,[2]   a 10      
  10_3_1_3_2_0_0_0_0_0_1 8 4 15   7,[2]   a 10      
  10_3_2_0_3_0_1_0_0_0_1 8 7 15   7,[2]   a 10      
  10_3_2_1_2_0_1_0_0_0_1 8 59 15   7,[2]   a 10      
  10_3_2_2_1_0_1_0_0_0_1 8 22 15   7,[2]   a 10      
  10_3_3_0_1_0_2_0_0_0_1 8 15 15   7,[2]   a 10      
  10_3_3_0_3_0_0_0_0_0_1 7 8 15   6,[2]   a 10      
  10_3_3_1_0_0_2_0_0_0_1 8 16 15   7,[2]   a 10      
  10_3_3_1_1_0_0_0_1_0_1 8 11 15   7,[2]   a 10      
  10_3_3_1_2_0_0_0_0_0_1 7 59 15   6,[2]   a 10      
  10_3_3_2_0_0_0_0_1_0_1 8 4 15   7,[2]   a 10      
  10_3_3_2_1_0_0_0_0_0_1 7 28 15   6,[2]   a 10      
  10_3_3_3_0_0_0_0_0_0_1 7 3 15   6,[2]   a 10      
  10_3_4_0_1_0_1_0_0_0_1 7 19 15   6,[2]   a 10      
  10_3_4_1_0_0_1_0_0_0_1 7 10 15   6,[2]   a 10      
  10_3_5_0_0_0_0_0_1_0_1 7 8 15   6,[2]   a 10      
  10_3_5_0_1_0_0_0_0_0_1 6 15 15   5,[2]   a 10      
  10_3_5_1_0_0_0_0_0_0_1 6 8 15   5,[2]   a 10      
  10_4_0_0_2_0_4_0_0 8 10 15   7,[2]   b 10      
  10_4_0_0_3_0_2_0_1 8 35 15   7,[2]   b 10      
  10_4_0_0_4_0_0_0_2 8 3 15   7,[2]   b 10      
  10_4_0_1_1_0_4_0_0 8 14 15   7,[2]   b 10      
  10_4_0_1_2_0_2_0_1 8 46 15   7,[2]   b 10      
  10_4_0_1_3_0_0_0_2 8 7 15   7,[2]   b 10      
  10_4_0_1_3_0_1_0_0_0_1 8 3 15   7,[2]   a,b 10      
  10_4_0_2_0_0_4_0_0 8 6 15   7,[2]   b 10      
  10_4_0_2_1_0_2_0_1 8 17 15   7,[2]   b 10      
  10_4_0_2_2_0_0_0_2 8 1 15   7,[2]   b 10 *    
  10_4_0_3_0_0_2_0_1 8 3 15   7,[2]   b 10      
  10_4_0_3_1_0_0_0_2 8 2 15   7,[2]   b 10      
  10_4_1_0_0_0_5_0_0 8 2 15   7,[2]   b 10      
  10_4_1_0_1_0_3_0_1 8 43 15   7,[2]   b 10      
  10_4_1_0_2_0_1_0_2 8 8 15   7,[2]   b 10      
  10_4_1_1_0_0_3_0_1 8 13 15   7,[2]   b 10      
  10_4_1_1_1_0_1_0_2 8 7 15   7,[2]   b 10      
  10_4_1_1_3_0_0_0_0_0_1 7 17 15   6,[2]   a 10      
  10_4_1_2_2_0_0_0_0_0_1 7 5 15   6,[2]   a 10      
  10_4_2_0_0_0_2_0_2 8 2 15   7,[2]   b 10      
  10_4_2_0_2_0_1_0_0_0_1 7 8 15   6,[2]   a 10      
  10_4_2_1_1_0_1_0_0_0_1 7 1 15   6,[2]   a 10 *    
  10_4_2_2_0_0_1_0_0_0_1 7 6 15   6,[2]   a 10      
  10_4_3_0_0_0_2_0_0_0_1 7 1 15   6,[2]   a 10 *    
  10_4_3_0_2_0_0_0_0_0_1 6 62 15   5,[2]   a 10      
  10_4_3_1_1_0_0_0_0_0_1 6 44 15   5,[2]   a 10      
  10_4_3_2_0_0_0_0_0_0_1 6 28 15   5,[2]   a 10      
  10_4_4_0_0_0_1_0_0_0_1 6 4 15   5,[2]   a 10      
  10_4_5_0_0_0_0_0_0_0_1 5 12 15   3,[2]   a 10      
  10_5_1_0_3_0_0_0_0_0_1 6 21 15   5,[2]   a 10      
  10_5_1_1_2_0_0_0_0_0_1 6 16 15   5,[2]   a 10      
  10_5_2_0_1_0_1_0_0_0_1 6 26 15   5,[2]   a 10      
  10_5_2_1_0_0_1_0_0_0_1 6 30 15   5,[2]   a 10      
  10_5_3_0_1_0_0_0_0_0_1 5 94 15   4,[2]   a 10      
  10_5_3_1_0_0_0_0_0_0_1 5 43 15   4,[2]   a 10      
  10_6_1_0_2_0_0_0_0_0_1 5 52 15   4,[2]   a 10      
  10_6_1_1_1_0_0_0_0_0_1 5 13 15   4,[2]   a 10      
  10_6_2_0_0_0_1_0_0_0_1 5 67 15   4,[2]   a 10      
  10_6_3_0_0_0_0_0_0_0_1 4 24 15   3,[2]   a 10      
  10_7_0_0_1_0_1_0_0_0_1 5 12 15   4,[2]   a 10      
  10_7_1_0_0_0_0_0_1_0_1 5 20 15   4,[2]   a 10      
  10_7_1_0_1_0_0_0_0_0_1 4 7 15   3,[2]   a 10      
  10_8_0_0_0_0_0_0_0_0_2 5 3 15   4,[2]   a 10 *    
  10_1_0_1_5_0_2_0_1 11 1559 12   10,[2]   a 10, #1      
  10_1_0_1_6_0_0_0_2 11 112 12   10,[2]   a 10, #1      
  10_1_0_2_4_0_2_0_1 11 3244 12   10,[2]   a 10, #1      
  10_1_0_4_2_0_2_0_1 11 1507 12   10,[2]   a 10, #1      
  10_1_2_1_3_0_2_0_1 10 8112 12   9,[2]   a 10, #1      
  10_1_5_2_0_0_1_0_1 8 1978 12   7,[2]   a 10, #1      
  10_2_0_2_4_0_0_0_2 10 359 12   9,[2]   a,c 10, #1      
  10_2_0_2_5_0_0_0_1 9 1452 12   8,[2]   a 10, #1      
  10_2_0_4_1_0_2_0_1 10 1315 12   9,[2]   a 10, #1      
  10_2_0_5_1_0_0_0_2 10 311 12   9,[2]   a 10, #1      
  10_2_1_2_1_0_3_0_1 10 529 13   9,[2]   d 10, #1      
  10_2_1_4_1_0_1_0_1 9 648 12   8,[2]   a 10, #1      
  10_4_0_1_5_0_0_0_0 6 6203 11   5,[2]   b 10, #1      
  10_4_0_6_0_0_0_0_0 6 1166 11   6,[] Z b 10, #1      
  10_4_2_1_0_0_2_0_1 7 805 13   6,[2]   b 10, #1      
  10_1_0_2_6_0_0_0_1 10 699 13   9,[2]   a' 10, #1, β      
  10_3_0_4_0_0_2_0_1 9 3 15   8,[2]   b' 10, #1, β      
  10_1_0_1_7_0_0_0_1 10 232 13   9,[2]   a' 10, #1,β      
  10_1_6_0_0_0_2_0_1 8 2343 13   7,[2]   a' 10, #1,β      
  10_3_0_3_1_0_2_0_1 9 34 14   8,[2]   b 10, #10      
  10_3_1_0_3_0_3_0_0 8 3323 12   7,[2]   b 10, #10      
  10_4_1_2_1_0_1_0_1 7 2066 13   6,[2]   b 10, #10      
  10_5_0_0_1_0_4_0_0 7 68 14   6,[2]   b 10, #10      
  10_2_1_5_0_0_1_0_1 9 120 13   8,[2]   a' 10, #10,β      
  10_3_2_0_4_0_0_0_1 7 7566 12   6,[2]   a 10, #100      
  10_5_0_1_2_0_2_0_0 6 4892 12   5,[2]   b 10, #100      
  10_5_0_2_1_0_2_0_0 6 5061 12   5,[2]   b 10, #103      
  10_3_0_2_3_0_2_0_0 8 3563 12   7,[2]   b 10, #105      
  10_3_1_2_1_0_3_0_0 8 3667 12   7,[2]   b 10, #107      
  10_8_0_1_0_0_0_0_1 3 346 12   2,[2]   a 10, #109      
  10_3_0_2_1_0_4_0_0 9 25 14   8,[2]   b 10, #11      
  10_2_1_1_3_0_3_0_0 9 9136 12   8,[2]   d' 10, #11, β      
  10_2_6_0_1_0_0_0_1 6 10360 12   5,[2]   a 10, #113      
  10_4_1_0_3_0_1_0_1 7 2079 13   6,[2]   b 10, #12      
  10_4_1_1_2_0_1_0_1 7 3514 13   6,[2]   b 10, #12      
  10_5_1_1_0_0_3_0_0 6 1562 12   5,[2]   b 10, #12      
  10_7_1_0_0_0_1_0_1 4 8109 12   3,[2]   a 10, #120      
  10_3_4_2_0_0_0_0_1 6 9767 12   5,[2]   a 10, #123      
  10_2_3_0_3_0_1_0_1 8 13619 12   7,[2]   a 10, #127      
  10_7_0_1_1_0_0_0_1 4 2481 12   3,[2]   a 10, #127      
  10_0_0_4_4_0_0_0_2 12 130 12   11,[2]   a 10, #129      
  10_3_2_0_0_0_4_0_1 9 41 14   8,[2]   b 10, #13      
  10_8_0_0_0_0_0_0_2 4 818 12   3,[2]   a 10, #13      
  10_0_6_1_2_0_0_0_1 8 1925 12   7,[2]   a 10, #1346      
  10_3_1_1_2_0_3_0_0 8 5949 12   7,[2]   b 10, #1377      
  10_3_0_0_3_0_4_0_0 9 27 14   8,[2]   b 10, #14      
  10_4_0_2_3_0_0_0_1 7 779 13   6,[2]   b 10, #14      
  10_4_0_3_1_0_2_0_0 7 823 13   6,[2]   b 10, #14      
  10_4_1_1_1_0_3_0_0 7 4142 13   6,[2]   b 10, #14      
  10_2_4_0_3_0_0_0_1 7 17718 12   6,[2]   a 10, #142      
  10_1_3_3_0_0_1_0_2 10 502 12   9,[2]   a 10, #143      
  10_5_2_0_2_0_0_0_1 5 21094 12   4,[2]   a 10, #145      
  10_4_2_1_1_0_2_0_0 6 60392 11   5,[2]   b 10, #149      
  10_4_1_0_2_0_3_0_0 7 2930 13   6,[2]   b 10, #15      
  10_4_2_0_3_0_0_0_1 6 14746 12   5,[2]   a 10, #156      
  10_3_1_1_1_0_3_0_1 9 175 14   8,[2]   b 10, #16      
  10_0_6_3_0_0_0_0_1 8 211 12   7,[2]   a 10, #160      
  10_0_4_3_0_0_2_0_1 10 1143 12   9,[2]   a 10, #165      
  10_2_2_4_1_0_0_0_1 8 2650 12   7,[2]   a 10, #17      
  10_2_4_1_0_0_2_0_1 8 3015 12   7,[2]   a 10, #17      
  10_3_0_1_3_0_2_0_1 9 99 14   8,[2]   b 10, #17      
  10_3_1_0_2_0_3_0_1 9 148 14   8,[2]   b 10, #17      
  10_3_3_1_1_0_1_0_1 7 15415 12   6,[2]   a 10, #17      
  10_4_0_0_5_0_0_0_1 7 234 13   6,[2]   b 10, #17      
  10_4_0_3_2_0_0_0_1 7 923 13   6,[2]   b 10, #17      
  10_0_4_0_5_0_0_0_1 9 2117 12   8,[2]   a 10, #1715      
  10_3_5_0_1_0_1_0_0 5 246321 9   4,[2]   a 10, #174      
  10_0_1_4_3_0_1_0_1 11 3079 12   10,[2]   a 10, #1741      
  10_4_2_2_1_0_0_0_1 6 11446 12   5,[2]   a 10, #179      
  10_1_1_3_3_0_1_0_1 10 6347 12   9,[2]   a 10, #18      
  10_2_1_1_4_0_1_0_1 9 5008 12   8,[2]   a 10, #18      
  10_2_4_0_1_0_2_0_1 8 6666 12   7,[2]   a 10, #18      
  10_3_0_3_2_0_2_0_0 8 1460 12   7,[2]   b 10, #18      
  10_4_4_1_0_0_0_0_1 5 11459 12   4,[2]   a 10, #181      
  10_4_2_1_2_0_0_0_1 6 18606 12   5,[2]   a 10, #188      
  10_3_3_0_3_0_1_0_0 6 333695 10   5,[2]   a' 10, #189,β      
  10_1_4_2_2_0_0_0_1 8 10059 12   7,[2]   a 10, #19      
  10_2_0_2_2_0_2_0_2 11 233 13   10,[2]   c 10, #19      
  10_3_2_2_2_0_0_0_1 7 12008 12   6,[2]   a 10, #199      
  10_1_0_3_3_0_2_0_1 11 3312 12   10,[2]   a 10, #2      
  10_1_0_3_5_0_0_0_1 10 776 12   9,[2]   a 10, #2      
  10_1_1_2_4_0_1_0_1 10 7662 12   9,[2]   a 10, #2      
  10_1_8_0_0_0_0_0_1 6 892 12   5,[2]   a 10, #2      
  10_2_3_0_2_0_3_0_0 8 22217 11   7,[2]   e 10, #2      
  10_2_3_2_1_0_1_0_1 8 10016 12   7,[2]   a 10, #2      
  10_2_1_2_0_0_5_0_0 10 68 14   9,[2]   d' 10, #2, β      
  10_2_0_2_3_0_2_0_1 10 1103 13   9,[2]   a' 10, #2,β      
  10_4_0_2_2_0_2_0_0 7 2239 13   6,[2]   b 10, #20      
  10_6_2_1_0_0_0_0_1 4 10506 12   3,[2]   a 10, #204      
  10_5_2_2_0_0_0_0_1 5 7051 12   4,[2]   a 10, #205      
  10_3_4_1_1_0_0_0_1 6 20534 12   5,[2]   a 10, #207      
  10_1_4_0_2_0_2_0_1 9 8609 12   8,[2]   a 10, #21      
  10_1_4_2_0_0_2_0_1 9 1839 12   8,[2]   a 10, #21      
  10_3_0_1_2_0_4_0_0 9 69 14   8,[2]   b 10, #21      
  10_3_5_0_0_0_1_0_1 6 8883 12   5,[2]   a 10, #225      
  10_1_3_3_2_0_1_0_0 8 72805 9   7,[2]   a 10, #23      
  10_3_2_0_1_0_4_0_0 8 1557 12   7,[2]   b 10, #23      
  10_0_4_2_3_0_0_0_1 9 3527 12   8,[2]   a 10, #2312      
  10_3_6_0_0_0_0_0_1 5 4864 12   4,[2]   a 10, #239      
  10_5_0_1_1_0_2_0_1 7 42 14   6,[2]   b 10, #24      
  10_2_1_0_3_0_3_0_1 10 355 14   9,[2]   d' 10, #24, β      
  10_2_0_1_6_0_0_0_1 9 382 13   8,[2]   a' 10, #242,β      
  10_1_2_3_3_0_0_0_1 9 3363 13   8,[2]   a' 10, #248,β      
  10_6_2_0_1_0_0_0_1 4 24763 12   3,[2]   a 10, #249      
  10_1_3_1_3_0_1_0_1 9 16559 12   8,[2]   a 10, #25      
  10_3_0_0_4_0_2_0_1 9 39 14   8,[2]   b 10, #25      
  10_8_0_0_1_0_0_0_1 3 2262 12   2,[2]   a 10, #262      
  10_1_6_2_0_0_0_0_1 7 1828 12   6,[2]   a 10, #27      
  10_2_0_4_3_0_0_0_1 9 1114 12   8,[2]   a 10, #27      
  10_2_0_5_0_0_2_0_1 10 594 12   9,[2]   a 10, #27      
  10_2_5_0_2_0_1_0_0 6 330437 10   5,[2]   a' 10, #27,β      
  10_5_3_0_0_0_1_0_1 5 13149 12   4,[2]   a 10, #274      
  10_1_2_3_1_0_2_0_1 10 6093 12   9,[2]   a 10, #28      
  10_1_3_2_2_0_1_0_1 9 12819 12   8,[2]   a 10, #28      
  10_2_1_3_0_0_3_0_1 10 228 13   9,[2]   d 10, #28      
  10_3_0_2_2_0_2_0_1 9 139 14   8,[2]   b 10, #28      
  10_3_3_2_0_0_1_0_1 7 5366 12   6,[2]   a 10, #28      
  10_4_4_0_1_0_0_0_1 5 25973 12   4,[2]   a 10, #286      
  10_2_0_4_2_0_0_0_2 10 582 12   9,[2]   a 10, #288      
  10_1_2_2_4_0_0_0_1 9 10018 12   8,[2]   a 10, #29      
  10_2_2_0_5_0_0_0_1 8 3475 12   7,[2]   a 10, #29      
  10_5_1_0_1_0_3_0_0 6 2906 12   5,[2]   b 10, #2902      
  10_5_4_0_0_0_0_0_1 4 12477 12   3,[2]   a 10, #293      
  10_7_2_0_0_0_0_0_1 3 7137 12   2,[2]   a 10, #296      
  10_1_4_3_1_0_0_0_1 8 2754 12   7,[2]   a 10, #3      
  10_2_1_0_5_0_1_0_1 9 1836 12   8,[2]   a 10, #3      
  10_4_2_0_1_0_2_0_1 7 1227 13   6,[2]   b 10, #3      
  10_1_0_4_4_0_0_0_1 10 623 13   9,[2]   a' 10, #3, β      
  10_3_1_0_1_0_5_0_0 9 44 14   8,[2]   b 10, #30      
  10_5_0_0_2_0_2_0_1 7 71 14   6,[2]   b 10, #30      
  10_1_4_0_4_0_0_0_1 8 5679 12   7,[2]   a 10, #31      
  10_2_5_1_0_0_1_0_1 7 5048 12   6,[2]   a 10, #31      
  10_3_0_3_0_0_4_0_0 9 52 14   8,[2]   b 10, #31      
  10_1_1_5_1_0_1_0_1 10 1802 12   9,[2]   a 10, #33      
  10_1_4_1_1_0_2_0_1 9 5151 12   8,[2]   a 10, #33      
  10_2_2_2_1_0_2_0_1 9 4304 12   8,[2]   a 10, #33      
  10_4_2_0_2_0_2_0_0 6 72804 11   5,[2]   b 10, #335      
  10_4_5_0_0_0_1_0_0 4 252067 9   4,[2]   a 10, #34463      
  10_2_2_2_3_0_0_0_1 8 11799 12   7,[2]   a 10, #35      
  10_3_2_1_3_0_0_0_1 7 16349 12   6,[2]   a 10, #35      
  10_4_2_0_0_0_4_0_0 7 451 13   6,[2]   b 10, #35      
  10_0_4_4_1_0_0_0_1 9 445 12   8,[2]   a 10, #388      
  10_0_2_3_2_0_2_0_1 11 5790 12   10,[2]   a 10, #399      
  10_1_0_5_3_0_0_0_1 10 944 12   9,[2]   a 10, #4      
  10_1_1_2_2_0_3_0_1 11 3252 12   10,[2]   a 10, #4      
  10_1_2_1_5_0_0_0_1 9 4758 12   8,[2]   a 10, #4      
  10_2_0_3_0_0_2_0_3 12 12 14   11,[2]   b 10, #4      
  10_2_4_3_0_0_0_0_1 7 2063 12   6,[2]   a 10, #4      
  10_2_0_3_2_0_2_0_1 10 2106 12   9,[2]   a 10, #40      
  10_1_1_4_2_0_1_0_1 10 5510 12   9,[2]   a 10, #41      
  10_1_5_1_1_0_1_0_1 8 8881 12   7,[2]   a 10, #41      
  10_0_4_0_1_0_4_0_1 11 443 12   10,[2]   a 10, #416      
  10_1_5_0_3_0_1_0_0 7 126921 9   6,[2]   a 10, #42      
  10_4_1_0_4_0_1_0_0 6 61939 11   5,[2]   b 10, #427      
  10_1_5_0_2_0_1_0_1 8 10866 12   7,[2]   a 10, #43      
  10_3_3_0_2_0_1_0_1 7 16159 12   6,[2]   a 10, #43      
  10_9_0_0_0_0_0_0_1 2 265 12   1,[2]   a 10, #43      
  10_2_1_3_2_0_1_0_1 9 3866 12   8,[2]   a 10, #44      
  10_1_2_2_2_0_2_0_1 10 6638 13   9,[2]   a' 10, #443,β      
  10_1_2_4_0_0_2_0_1 10 1056 13   9,[2]   a' 10, #455, β      
  10_2_2_1_0_0_4_0_1 10 83 13   9,[2]   d 10, #46      
  10_2_2_1_2_0_2_0_1 9 5624 12   8,[2]   a 10, #46      
  10_3_2_3_1_0_0_0_1 7 4206 12   6,[2]   a 10, #47      
  10_1_3_3_1_0_1_0_1 9 6406 12   8,[2]   a 10, #48      
  10_4_3_0_1_0_1_0_1 6 18998 12   5,[2]   a 10, #48      
  10_5_0_0_3_0_2_0_0 6 5311 12   5,[2]   b 10, #4880      
  10_1_2_4_2_0_0_0_1 9 2425 12   8,[2]   a 10, #5      
  10_2_0_5_2_0_0_0_1 9 400 12   8,[2]   a 10, #5      
  10_2_1_2_3_0_1_0_1 9 5532 12   8,[2]   a 10, #5      
  10_3_0_4_1_0_2_0_0 8 2064 12   7,[2]   b 10, #500      
  10_0_2_5_2_0_0_0_1 10 972 12   9,[2]   a 10, #502      
  10_2_2_0_3_0_2_0_1 9 4067 12   8,[2]   a 10, #504      
  10_4_2_2_0_0_2_0_0 6 17830 11   5,[2]   b 10, #510      
  10_0_2_3_0_0_4_0_1 12 640 12   11,[2]   a 10, #513      
  10_2_0_3_1_0_2_0_2 11 167 13   10,[2]   c 10, #52      
  10_2_0_0_7_0_0_0_1 9 77 13   8,[2]   a' 10, #53,β      
  10_4_1_2_2_0_1_0_0 6 70427 11   5,[2]   b 10, #531      
  10_1_3_1_2_0_1_0_2 10 900 13   9,[2]   a' 10, #534,β      
  10_2_4_2_1_0_0_0_1 7 12940 12   6,[2]   a 10, #54      
  10_2_4_1_2_0_0_0_1 7 21763 12   6,[2]   a 10, #57      
  10_3_0_4_2_0_0_0_1 8 1147 12   7,[2]   a,b 10, #57      
  10_4_0_1_3_0_2_0_0 7 3025 13   6,[2]   b 10, #573      
  10_1_3_2_0_0_3_0_1 10 922 12   9,[2]   a 10, #6      
  10_4_1_1_3_0_1_0_0 6 85915 11   5,[2]   b 10, #613      
  10_5_2_1_1_0_0_0_1 5 20289 12   4,[2]   a 10, #625      
  10_0_8_0_1_0_0_0_1 7 693 12   6,[2]   a 10, #645      
  10_2_2_1_4_0_0_0_1 8 11482 12   7,[2]   a 10, #66      
  10_4_1_3_1_0_1_0_0 6 35231 11   5,[2]   b 10, #674      
  10_2_0_2_0_0_4_0_2 12 8 14   11,[2]   b 10, #7      
  10_3_1_2_0_0_3_0_1 9 43 14   8,[2]   b 10, #7      
  10_4_0_0_4_0_2_0_0 7 957 13   6,[2]   b 10, #7      
  10_4_0_3_3_0_0_0_0 6 3342 11   5,[2]   b 10, #7      
  10_5_0_1_0_0_4_0_0 7 29 14   6,[2]   b 10, #7      
  10_5_0_2_0_0_2_0_1 7 20 14   6,[2]   b 10, #7      
  10_1_3_0_4_0_1_0_1 9 10517 12   8,[2]   a 10, #70      
  10_7_0_0_2_0_0_0_1 4 3758 12   3,[2]   a 10, #71      
  10_4_0_0_6_0_0_0_0 6 2025 11   5,[2]   b 10, #74      
  10_3_0_2_4_0_0_0_1 8 1379 12   7,[2]   a,b 10, #78      
  10_1_4_1_3_0_0_0_1 8 12049 12   7,[2]   a 10, #8      
  10_2_6_1_0_0_0_0_1 6 2697 12   5,[2]   a 10, #8      
  10_4_1_2_0_0_3_0_0 7 735 13   6,[2]   b 10, #8      
  10_3_1_3_0_0_3_0_0 8 895 12   7,[2]   b 10, #81      
  10_2_5_0_1_0_1_0_1 7 12947 12   6,[2]   a 10, #83      
  10_2_3_1_2_0_1_0_1 8 20843 12   7,[2]   a 10, #85      
  10_3_4_0_2_0_0_0_1 6 32206 12   5,[2]   a 10, #89      
  10_1_6_0_2_0_0_0_1 7 6499 12   6,[2]   a 10, #9      
  10_4_0_1_4_0_0_0_1 7 918 13   6,[2]   b 10, #9      
  10_4_0_2_4_0_0_0_0 6 9125 11   5,[2]   b 10, #98      
  10_5_3_0_1_0_1_0_0 4 646350 9   3,[2]   a 10, 587417      
  10_1_1_1_5_0_1_0_1 10 4364 12   9,[2]   a 10,#1      
  10_1_1_6_0_0_1_0_1 10 72 13   9,[2]   a' 10,#2,β      
  10_1_2_0_6_0_0_0_1 9 2088 12   8,[2]   a 10,#3      
  10_2_1_1_1_0_5_0_0 10 92 14   9,[2]   d' 10,#3,β      
  10_3_0_0_6_0_0_0_1 8 92 13   7,[2]   b' 10,#33,β      
  10_2_2_3_2_0_0_0_1 8 4065 12   7,[2]   a 10,#36      
  10_2_1_1_2_0_3_0_1 10 421 14   9,[2]   d' 10,#39, β      
  10_3_1_1_0_0_5_0_0 9 20 14   8,[2]   b 10,#5      
  10_2_0_6_0_0_0_0_2 10 6 13   9,[2]   a' 10,#5,β *    
  10_3_0_1_4_0_2_0_0 8 2593 12   7,[2]   b 10. #5      
  10_8_2_0_0_0_0_0_0 1 2259065 3   0,[2]   a 7      
  10_2_0_8_0_0_0_0_0 8 10883 6   8,[] Z a,b 8,N1      
  10_8_0_2_0_0_0_0_0 2 182734 6   2,[] Z a 8,N2      
  10_5_4_1_0_0_0_0_0 3 2887846 6   2,[2]   a,b 8,N3      
  10_9_0_1_0_0_0_0_0 1 133745 6   Z Z a 8,N4      
  10_5_0_5_0_0_0_0_0 5 9557 10   5,[] Z b 9      
  10_5_2_0_3_0_0_0_0 4 985297 8   3,[2]   b 9, #1      
  10_7_2_0_1_0_0_0_0 2 2349640 6   1,[2]   a 9, #1      
  10_8_0_0_2_0_0_0_0 2 289834 6   1,[2]   a 9, #1      
  10_9_0_0_1_0_0_0_0 1 105737 6   0,[2]   a 9, #1      
  10_4_4_0_2_0_0_0_0 4 2551116 7   3,[2]   b 9, #1(3402_a)      
  10_3_6_0_1_0_0_0_0 4 1627028 6   3,[2]   a 9, #1, α      
  10_6_0_0_4_0_0_0_0 4 34016 8   3,[2]   b 9, #7      
  10_4_2_1_3_0_0_0_0 5 525949 9   4,[2]   b 9,#1      
  10_4_2_2_2_0_0_0_0 5 382574 9   4,[2]   b 9,#1      
  10_0_0_0_0_0_2_0_8 19 2 15   18,[2]            
  10_0_0_0_0_0_4_0_6 18 9 15   17,[2]