# Difference: MathTest (1 vs. 4)

#### Revision 42008-02-21 - DickFurnas

Line: 1 to 1

 META TOPICPARENT name="SteveGaarder"
Here is some math:
Line: 20 to 20

## Sample Math graphics and their LaTeX expressions as used to produce them on these pages.

Deleted:
<
<
 Examples for using . In the TWiki web collaboration environment, which can have embedded LaTeX support, these must be surrounded by % e.g. %$\pi$% yields This graphic arises from this text. $-X$ $\widehat{p}\dagger x_{1}^\prime\bar{x}\bullet$ $\alpha\beta\delta\gamma\mu\pi\sigma\theta\omega$ $A B\Delta\Gamma M\Pi\Sigma\Theta\Omega$ $\sqrt{x}^2 = \sqrt{x}$ $x = \frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$ $x = \mbox{\LARGE$\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$}$ $Pr(\mbox{\small X=k})={n\choose k}p^k(1-p)^{n-k}$ $\sum_{i=1}^n i = \frac{n*(n+1)}{2}$ $\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$ $\int {f^{-1}(y)} dy = x f(x) - \int{f(x)} dx$ where $x = f^{-1}(y)$ $y\propto x$ $F^{\circ}=\frac{9}{5} C + 32$ $N(\mu,\sigma)$ $Binomial(n,p)\sim N(np,\sqrt{npq})$ $\mbox{\small$Binomial(n,p)\sim N(np,\sqrt{npq})$}$ $\ll 0 \le\sigma^2 < \infty \gg$ $year\approx\pi\cdot10^7 seconds$

\ No newline at end of file
>
>
 Examples for using . This installation of the TWiki web collaboration environment has embedded LaTeX support. Expressions must be surrounded by opening and closing latex tags. e.g.: e^{i\pi}=-1 yields This graphic arises from this text. -X \widehat{p}\dagger x_{1}^\prime\bar{x}\bullet \alpha\beta\delta\gamma\mu\pi\sigma\theta\omega A B\Delta\Gamma M\Pi\Sigma\Theta\Omega \sqrt{x}^2  = \sqrt{x} x = \mbox{\LARGE $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$} x = \frac{ -b\pm\sqrt{b^2-4ac} }{ 2a } x = \mbox{\small $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$} Pr(\mbox{\small X=k})={n\choose k}p^k(1-p)^{n-k} \sum_{i=1}^n i = \frac{n*(n+1)}{2} \int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}} \int {f^{-1}(y)} dy = x f(x) - \int{f(x)} dx $where$ x = f^{-1}(y) y\propto x F^{\circ}=\frac{9}{5} C + 32 N(\mu,\sigma) Binomial(n,p)\sim N(np,\sqrt{npq}) \mbox{\small $Binomial(n,p)\sim N(np,\sqrt{npq})$} \ll 0 \le\sigma^2 < \infty \gg year\approx\pi\cdot10^7 seconds

#### Revision 32007-03-01 - DickFurnas

Line: 1 to 1

 META TOPICPARENT name="SteveGaarder"
Here is some math:
Line: 28 to 28 $\widehat{p}\dagger x_{1}^\prime\bar{x}\bullet$ $\alpha\beta\delta\gamma\mu\pi\sigma\theta\omega$ $A B\Delta\Gamma M\Pi\Sigma\Theta\Omega$
>
> $\sqrt{x}^2 = \sqrt{x}$ $x = \frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$ $x = \mbox{\LARGE$\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$}$ $Pr(\mbox{\small X=k})={n\choose k}p^k(1-p)^{n-k}$

#### Revision 22007-03-01 - DickFurnas

Line: 1 to 1

 META TOPICPARENT name="SteveGaarder"
Here is some math:
Line: 14 to 14

-- SteveGaarder - 28 Feb 2007 \ No newline at end of file

>
>
Here is some more math:

## Sample Math graphics and their LaTeX expressions as used to produce them on these pages.

 Examples for using . In the TWiki web collaboration environment, which can have embedded LaTeX support, these must be surrounded by % e.g. %$\pi$% yields This graphic arises from this text. $-X$ $\widehat{p}\dagger x_{1}^\prime\bar{x}\bullet$ $\alpha\beta\delta\gamma\mu\pi\sigma\theta\omega$ $A B\Delta\Gamma M\Pi\Sigma\Theta\Omega$ $x = \frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$ $x = \mbox{\LARGE$\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$}$ $Pr(\mbox{\small X=k})={n\choose k}p^k(1-p)^{n-k}$ $\sum_{i=1}^n i = \frac{n*(n+1)}{2}$ $\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$ $\int {f^{-1}(y)} dy = x f(x) - \int{f(x)} dx$ where $x = f^{-1}(y)$ $y\propto x$ $F^{\circ}=\frac{9}{5} C + 32$ $N(\mu,\sigma)$ $Binomial(n,p)\sim N(np,\sqrt{npq})$ $\mbox{\small$Binomial(n,p)\sim N(np,\sqrt{npq})$}$ $\ll 0 \le\sigma^2 < \infty \gg$ $year\approx\pi\cdot10^7 seconds$

#### Revision 12007-02-28 - SteveGaarder

Line: 1 to 1
>
>
 META TOPICPARENT name="SteveGaarder"
Here is some math:

<latex title="this is an example">
\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}
</latex> -- SteveGaarder - 28 Feb 2007

Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.