-- Main.ebs22 - 2016-01-07 -- Main.srs74 - 2015-12-22

# Pseudomanifold Triangulations on 10 Vertices

### Complex: 10_a_b_c_d_0_e_0_f_0_g

• a= number of vertex links homeomorphic to the sphere
• b= number of vertex links homeomorphic to the real projective plane
• c= number of vertex links homeomorphic to the torus
• d= number of vertex links homeomorphic to the Klein bottle
• e= number of vertex links homeomorphic to the genus three nonorientable surface
• f= number of vertex links homeomorphic to the genus four nonorientable surface
• g= number of vertex links homeomorphic to the genus five nonorientable surface

### Γ - Γ is the minimum of g2 over all triangulations of a three-dimensional normal pseudomanifold with the given singular vertices. A letter in this column indicates that minG2=Γ and the proof is indicated below. A superscript ' indicates that Γ=minG2-1 and 11 vertices are needed to realize Γ.

• a - For any subcomplex Δ' of Δ, g2(Δ) ≥ g2 (Δ'). Usually v is a vertex and Δ'=st(v), so g2(Δ) ≥ g2 (st v) = g2 (link v).
• b - If n is the number of singular vertices, then g2 ≥ 2 χ - ( n-3 choose 3). If n-3 < 3, then the binomial coefficient is interepreted as zero.
• c - If Δ has 8 singular vertices and m of them are Klein bottles, then g2 ≥ 2 χ - 10 + (m/3)
• d - If Δ has 8 singular vertices and any of them are real projective planes, then g2 ≥ 2 χ - 7
• e - If Δ has 8 singular vertices including 3 projective planes and 2 Klein bottles, then g2 ≥ 2 χ - 5
• f - Combine a with the fact that if v and w are two vertices which do not share an edge, then g2(Δ) ≥ g2 (link v) + g2 (link w)

### f-vector - A nonempty entry indicates that all possible f-vectors for complexes with the given singular vertices is known.

Except where otherwise noted, the f-vectors are characterized through h- and g-vectors by, h0=1, h4=1-χ, h3 - h1 = 2 χ, h1 ≥ f0-4, and Γ ≤ g2 ≤ (g1 +1 choose 2), where f0 is the minimum number of vertices required for a complex with the given singularities.

• The first entry is the minimum number of vertices possible for the given singularities
• 10 indicates that the possible f-vectors for PL-homeomorphic complexes for every complex in the group are the same and equal all possible f-vectors for that particular group of singularities
• 10, # indicates that the possible f-vectors of complexes PL-homeomorphic to complex # equals all possible f-vectors for that group of singularities.
• 10, #, β There is no complex with g-vector (5, Γ) for these singularities.
• 9, # indicates that the possible f-vectors of complexes PL-homeomorphic to complex # at http://www.math.cornell.edu/~takhmejanov/pseudoManifolds.html with the same singularities equals all possible f-vectors for that group of singularities.
• 9, #1, α There is no complex with g-vector (4,6) for these singularities.
• 8, N# indicates that the possible f-vectors of complexes PL-homeomorphic to complex N# in "Three-Dimensional Pseudomanifolds on Eight Vertices", B. Datta and N. Nilakantan, Indian J. of Mathematics and Mathematical Sciences, 2008, equals all possible f-vectors for that group of singularities.
• 7, The one-vertex suspension of the six-vertex triangulation of the real projective plane can be used to prove that the f-vectors of the suspension of the real projective plane has the same f-vectors as all complexes with exactly two singular vertices each with link homeomorphic to the real projective plane.
• 5, f-vectors of three-manifolds equal all possible f-vectors of S3.

### ≅ - * indicates that all complexes in this row are known to be PL-homeomorphic.

# Complex χ Triangulations minG2 H1 H2 H3 Γ f-vector delta epsilon
10_0_0_0_0_0_0_0_6_0_4 22 1 15   21,[2]   a,f 10 *
10_0_0_0_0_0_0_0_10 20 5 15   19,[2]   f 10
10_0_0_0_0_0_2_0_8 19 2 15   18,[2]   f 10
10_0_0_0_0_0_3_0_6_0_1 19 2 15   18,[2]   a,f 10
10_0_0_0_0_0_4_0_6 18 9 15   17,[2]   f 10
10_0_0_1_0_0_2_0_7 18 1 15   17,[2]   f 10 *
10_0_0_2_0_0_0_0_8 18 5 14   17,[2]
10_0_0_0_0_0_6_0_4 17 14 15   16,[2]   f 10
10_0_0_0_1_0_4_0_5 17 3 15   16,[2]   f 10
10_0_0_0_1_0_5_0_3_0_1 17 1 15   16,[2]   a,f 10 *
10_0_0_0_2_0_2_0_6 17 2 15   16,[2]
10_0_0_1_0_0_4_0_5 17 6 15   16,[2]   f 10
10_0_0_1_1_0_2_0_6 17 1 15   16,[2]       *
10_0_0_1_1_0_3_0_4_0_1 17 2 15   16,[2]   a 10
10_0_0_1_2_0_0_0_7 17 1 15   16,[2]       *
10_0_0_2_0_0_2_0_6 17 3 15   16,[2]
10_0_0_3_0_0_0_0_7 17 1 15   16,[2]       *
10_0_0_0_0_0_8_0_2 16 9 15   15,[2]   f 10
10_0_0_0_1_0_6_0_3 16 29 15   15,[2]   f 10
10_0_0_0_1_0_7_0_1_0_1 16 1 15   15,[2]   a,f 10 *
10_0_0_0_2_0_4_0_4 16 45 14   15,[2]
10_0_0_0_3_0_2_0_5 16 3 15   15,[2]
10_0_0_0_3_0_3_0_3_0_1 16 1 15   15,[2]   a 10 *
10_0_0_1_0_0_6_0_3 16 27 15   15,[2]   f 10
10_0_0_1_1_0_4_0_4 16 52 14   15,[2]
10_0_0_1_1_0_5_0_2_0_1 16 2 15   15,[2]   a 10
10_0_0_1_2_0_2_0_5 16 18 15   15,[2]
10_0_0_2_0_0_4_0_4 16 26 14   15,[2]
10_0_0_2_1_0_2_0_5 16 16 15   15,[2]
10_0_0_2_2_0_0_0_6 16 1 15   15,[2]       *
10_0_0_3_0_0_2_0_5 16 10 14   15,[2]
10_0_0_3_1_0_0_0_6 16 1 15   15,[2]       *
10_0_0_4_0_0_0_0_6 16 7 13   15,[2]
10_0_1_1_0_0_3_0_5 16 1 15   15,[2]       *
10_0_0_0_0_0_10_0_0 15 1 15   14,[2]   f   *
10_0_0_0_1_0_8_0_1 15 24 15   14,[2]   f 10
10_0_0_0_2_0_6_0_2 15 90 14   14,[2]
10_0_0_0_3_0_4_0_3 15 89 14   14,[2]
10_0_0_0_3_0_5_0_1_0_1 15 1 15   14,[2]   a 10 *
10_0_0_0_4_0_2_0_4 15 15 14   14,[2]
10_0_0_0_4_0_3_0_2_0_1 15 3 15   14,[2]   a 10
10_0_0_1_0_0_8_0_1 15 13 15   14,[2]   f 10
10_0_0_1_1_0_6_0_2 15 115 14   14,[2]
10_0_0_1_2_0_4_0_3 15 159 14   14,[2]
10_0_0_1_2_0_5_0_1_0_1 15 2 15   14,[2]   a 10
10_0_0_1_3_0_2_0_4 15 43 15   14,[2]
10_0_0_1_3_0_3_0_2_0_1 15 5 15   14,[2]   a 10
10_0_0_1_4_0_0_0_5 15 2 15   14,[2]
10_0_0_1_4_0_1_0_3_0_1 15 1 15   14,[2]   a 10 *
10_0_0_2_0_0_6_0_2 15 44 14   14,[2]
10_0_0_2_1_0_4_0_3 15 73 15   14,[2]
10_0_0_2_2_0_2_0_4 15 48 14   14,[2]
10_0_0_2_2_0_3_0_2_0_1 15 1 15   14,[2]   a 10 *
10_0_0_3_0_0_4_0_3 15 19 15   14,[2]
10_0_0_3_1_0_2_0_4 15 22 14   14,[2]
10_0_0_4_0_0_2_0_4 15 3 15   14,[2]
10_0_0_5_0_0_0_0_5 15 1 15   14,[2]       *
10_0_1_0_0_0_7_0_2 15 3 15   14,[2]
10_0_1_0_1_0_5_0_3 15 13 15   14,[2]
10_0_1_0_1_0_6_0_1_0_1 15 2 15   14,[2]   a 10
10_0_1_0_2_0_3_0_4 15 8 15   14,[2]
10_0_1_0_3_0_1_0_5 15 2 15   14,[2]
10_0_1_1_0_0_5_0_3 15 10 14   14,[2]
10_0_1_1_0_0_6_0_1_0_1 15 1 15   14,[2]   a 10 *
10_0_1_1_1_0_3_0_4 15 18 15   14,[2]
10_0_1_1_1_0_4_0_2_0_1 15 1 15   14,[2]   a 10 *
10_0_1_1_2_0_1_0_5 15 3 15   14,[2]
10_0_1_2_0_0_3_0_4 15 4 15   14,[2]
10_0_1_2_1_0_1_0_5 15 1 15   14,[2]       *
10_0_1_2_1_0_2_0_3_0_1 15 1 15   14,[2]   a 10 *
10_0_2_1_0_0_2_0_5 15 1 15   14,[2]       *
10_0_0_0_2_0_8_0_0 14 63 14   13,[2]
10_0_0_0_3_0_6_0_1 14 210 14   13,[2]
10_0_0_0_4_0_4_0_2 14 232 14   13,[2]
10_0_0_0_4_0_5_0_0_0_1 14 5 15   13,[2]   a 10
10_0_0_0_5_0_2_0_3 14 59 14   13,[2]
10_0_0_0_5_0_3_0_1_0_1 14 5 15   13,[2]   a 10
10_0_0_0_6_0_0_0_4 14 2 15   13,[2]
10_0_0_1_1_0_8_0_0 14 47 15   13,[2]
10_0_0_1_2_0_6_0_1 14 361 14   13,[2]
10_0_0_1_3_0_4_0_2 14 372 14   13,[2]
10_0_0_1_3_0_5_0_0_0_1 14 7 15   13,[2]   a 10
10_0_0_1_4_0_2_0_3 14 120 14   13,[2]
10_0_0_1_4_0_3_0_1_0_1 14 10 15   13,[2]   a 10
10_0_0_1_5_0_0_0_4 14 2 15   13,[2]
10_0_0_1_5_0_1_0_2_0_1 14 2 15   13,[2]   a 10
10_0_0_2_0_0_8_0_0 14 24 14   13,[2]
10_0_0_2_1_0_6_0_1 14 194 14   13,[2]
10_0_0_2_2_0_4_0_2 14 437 14   13,[2]
10_0_0_2_2_0_5_0_0_0_1 14 2 15   13,[2]   a 10
10_0_0_2_3_0_2_0_3 14 137 14   13,[2]
10_0_0_2_3_0_3_0_1_0_1 14 8 15   13,[2]   a 10
10_0_0_2_4_0_0_0_4 14 4 15   13,[2]
10_0_0_2_4_0_1_0_2_0_1 14 1 15   13,[2]   a 10 *
10_0_0_3_0_0_6_0_1 14 35 14   13,[2]
10_0_0_3_1_0_4_0_2 14 176 14   13,[2]
10_0_0_3_2_0_2_0_3 14 114 14   13,[2]
10_0_0_3_2_0_3_0_1_0_1 14 1 15   13,[2]   a 10 *
10_0_0_3_3_0_0_0_4 14 5 15   13,[2]
10_0_0_4_0_0_4_0_2 14 76 14   13,[2]
10_0_0_4_0_0_5_0_0_0_1 14 2 15   13,[2]   a 10
10_0_0_4_1_0_2_0_3 14 34 14   13,[2]
10_0_0_4_1_0_3_0_1_0_1 14 2 15   13,[2]   a 10
10_0_0_4_2_0_0_0_4 14 4 15   13,[2]
10_0_0_5_0_0_2_0_3 14 16 14   13,[2]
10_0_0_5_0_0_3_0_1_0_1 14 1 15   13,[2]   a 10 *
10_0_0_6_0_0_0_0_4 14 11 14   13,[2]
10_0_1_0_0_0_9_0_0 14 1 15   13,[2]       *
10_0_1_0_1_0_7_0_1 14 48 14   13,[2]
10_0_1_0_2_0_5_0_2 14 109 14   13,[2]
10_0_1_0_2_0_6_0_0_0_1 14 8 15   13,[2]   a 10
10_0_1_0_3_0_3_0_3 14 76 14   13,[2]
10_0_1_0_3_0_4_0_1_0_1 14 6 15   13,[2]   a 10
10_0_1_0_4_0_1_0_4 14 7 15   13,[2]
10_0_1_0_4_0_2_0_2_0_1 14 3 15   13,[2]   a 10
10_0_1_1_0_0_7_0_1 14 43 14   13,[2]
10_0_1_1_1_0_5_0_2 14 163 14   13,[2]
10_0_1_1_2_0_3_0_3 14 151 14   13,[2]
10_0_1_1_2_0_4_0_1_0_1 14 8 15   13,[2]   a 10
10_0_1_1_3_0_1_0_4 14 18 15   13,[2]
10_0_1_1_3_0_2_0_2_0_1 14 2 15   13,[2]   a 10
10_0_1_2_0_0_5_0_2 14 73 14   13,[2]
10_0_1_2_1_0_3_0_3 14 140 14   13,[2]
10_0_1_2_1_0_4_0_1_0_1 14 6 15   13,[2]   a 10
10_0_1_2_2_0_1_0_4 14 28 15   13,[2]
10_0_1_2_2_0_2_0_2_0_1 14 3 15   13,[2]   a 10
10_0_1_3_0_0_3_0_3 14 30 15   13,[2]
10_0_1_3_0_0_4_0_1_0_1 14 1 15   13,[2]   a 10 *
10_0_1_3_1_0_1_0_4 14 17 14   13,[2]
10_0_1_3_1_0_2_0_2_0_1 14 2 15   13,[2]   a 10
10_0_1_4_0_0_1_0_4 14 6 15   13,[2]
10_0_2_0_0_0_6_0_2 14 1 15   13,[2]       *
10_0_2_0_1_0_4_0_3 14 7 15   13,[2]
10_0_2_0_2_0_2_0_4 14 3 15   13,[2]
10_0_2_0_2_0_3_0_2_0_1 14 1 15   13,[2]   a 10 *
10_0_2_0_3_0_0_0_5 14 1 15   13,[2]       *
10_0_2_1_0_0_4_0_3 14 8 15   13,[2]
10_0_2_1_1_0_2_0_4 14 5 15   13,[2]
10_0_2_2_0_0_2_0_4 14 11 14   13,[2]
10_0_2_2_0_0_3_0_2_0_1 14 1 15   13,[2]   a 10 *
10_0_2_2_1_0_0_0_5 14 1 15   13,[2]       *
10_1_0_0_1_0_6_0_2 14 2 15   13,[2]
10_1_0_0_2_0_4_0_3 14 1 15   13,[2]       *
10_1_0_1_0_0_6_0_2 14 2 15   13,[2]
10_1_0_1_1_0_4_0_3 14 1 15   13,[2]       *
10_1_0_1_2_0_2_0_4 14 3 15   13,[2]
10_1_0_2_0_0_4_0_3 14 1 15   13,[2]       *
10_1_0_4_0_0_0_0_5 14 3 15   13,[2]
10_0_0_0_4_0_6_0_0 13 343 14   12,[2]
10_0_0_0_5_0_4_0_1 13 443 14   12,[2]
10_0_0_0_6_0_2_0_2 13 125 13   12,[2]
10_0_0_0_6_0_3_0_0_0_1 13 7 15   12,[2]   a 10
10_0_0_0_7_0_0_0_3 13 13 14   12,[2]
10_0_0_0_7_0_1_0_1_0_1 13 4 15   12,[2]   a 10
10_0_0_1_3_0_6_0_0 13 639 14   12,[2]
10_0_0_1_4_0_4_0_1 13 1105 14   12,[2]
10_0_0_1_5_0_2_0_2 13 280 14   12,[2]
10_0_0_1_5_0_3_0_0_0_1 13 11 15   12,[2]   a 10
10_0_0_1_6_0_0_0_3 13 12 15   12,[2]
10_0_0_1_6_0_1_0_1_0_1 13 1 15   12,[2]   a 10 *
10_0_0_2_2_0_6_0_0 13 443 14   12,[2]
10_0_0_2_3_0_4_0_1 13 1372 14   12,[2]
10_0_0_2_4_0_2_0_2 13 414 14   12,[2]
10_0_0_2_4_0_3_0_0_0_1 13 5 15   12,[2]   a 10
10_0_0_2_5_0_0_0_3 13 24 14   12,[2]
10_0_0_2_5_0_1_0_1_0_1 13 1 15   12,[2]   a 10 *
10_0_0_3_1_0_6_0_0 13 187 14   12,[2]
10_0_0_3_2_0_4_0_1 13 1021 14   12,[2]
10_0_0_3_3_0_2_0_2 13 406 13   12,[2]
10_0_0_3_3_0_3_0_0_0_1 13 10 15   12,[2]   a 10
10_0_0_3_4_0_0_0_3 13 66 13   12,[2]
10_0_0_3_4_0_1_0_1_0_1 13 4 15   12,[2]   a 10
10_0_0_4_0_0_6_0_0 13 58 13   12,[2]
10_0_0_4_1_0_4_0_1 13 340 14   12,[2]
10_0_0_4_2_0_2_0_2 13 122 14   12,[2]
10_0_0_4_2_0_3_0_0_0_1 13 2 15   12,[2]   a 10
10_0_0_4_3_0_0_0_3 13 16 14   12,[2]
10_0_0_4_3_0_1_0_1_0_1 13 3 15   12,[2]   a 10
10_0_0_5_0_0_4_0_1 13 67 14   12,[2]
10_0_0_5_1_0_2_0_2 13 36 14   12,[2]
10_0_0_5_1_0_3_0_0_0_1 13 3 15   12,[2]   a 10
10_0_0_6_0_0_2_0_2 13 9 14   12,[2]
10_0_0_7_0_0_0_0_3 13 12 13   12,[2]
10_0_1_0_2_0_7_0_0 13 151 14   12,[2]
10_0_1_0_3_0_5_0_1 13 584 14   12,[2]
10_0_1_0_4_0_3_0_2 13 356 14   12,[2]
10_0_1_0_4_0_4_0_0_0_1 13 19 15   12,[2]   a 10
10_0_1_0_5_0_1_0_3 13 40 14   12,[2]
10_0_1_0_5_0_2_0_1_0_1 13 7 15   12,[2]   a 10
10_0_1_0_6_0_0_0_2_0_1 13 2 15   12,[2]   a 10
10_0_1_1_1_0_7_0_0 13 159 14   12,[2]
10_0_1_1_2_0_5_0_1 13 1046 13   12,[2]
10_0_1_1_3_0_3_0_2 13 872 14   12,[2]
10_0_1_1_3_0_4_0_0_0_1 13 13 15   12,[2]   a 10
10_0_1_1_4_0_1_0_3 13 124 14   12,[2]
10_0_1_1_4_0_2_0_1_0_1 13 17 15   12,[2]   a 10
10_0_1_1_5_0_0_0_2_0_1 13 3 15   12,[2]   a 10
10_0_1_2_0_0_7_0_0 13 44 14   12,[2]
10_0_1_2_1_0_5_0_1 13 620 13   12,[2]
10_0_1_2_2_0_3_0_2 13 753 13   12,[2]
10_0_1_2_2_0_4_0_0_0_1 13 10 15   12,[2]   a 10
10_0_1_2_3_0_1_0_3 13 131 14   12,[2]
10_0_1_2_3_0_2_0_1_0_1 13 12 15   12,[2]   a 10
10_0_1_2_4_0_0_0_2_0_1 13 3 15   12,[2]   a 10
10_0_1_3_0_0_5_0_1 13 138 14   12,[2]
10_0_1_3_1_0_3_0_2 13 442 13   12,[2]
10_0_1_3_1_0_4_0_0_0_1 13 1 15   12,[2]       *
10_0_1_3_2_0_1_0_3 13 93 14   12,[2]
10_0_1_3_2_0_2_0_1_0_1 13 5 15   12,[2]   a 10
10_0_1_3_3_0_0_0_2_0_1 13 3 15   12,[2]   a 10
10_0_1_4_0_0_3_0_2 13 78 14   12,[2]
10_0_1_4_1_0_1_0_3 13 9 15   12,[2]
10_0_1_4_1_0_2_0_1_0_1 13 2 15   12,[2]   a 10
10_0_1_4_2_0_0_0_2_0_1 13 1 15   12,[2]   a 10 *
10_0_1_5_0_0_1_0_3 13 3 15   12,[2]
10_0_2_0_0_0_8_0_0 13 5 15   12,[2]
10_0_2_0_1_0_6_0_1 13 56 14   12,[2]
10_0_2_0_2_0_4_0_2 13 156 14   12,[2]
10_0_2_0_2_0_5_0_0_0_1 13 2 15   12,[2]   a 10
10_0_2_0_3_0_2_0_3 13 55 14   12,[2]
10_0_2_0_3_0_3_0_1_0_1 13 5 15   12,[2]   a 10
10_0_2_1_0_0_6_0_1 13 25 15   12,[2]
10_0_2_1_1_0_4_0_2 13 183 14   12,[2]
10_0_2_1_1_0_5_0_0_0_1 13 3 15   12,[2]   a 10
10_0_2_1_2_0_2_0_3 13 158 14   12,[2]
10_0_2_1_2_0_3_0_1_0_1 13 12 15   12,[2]   a 10
10_0_2_1_3_0_0_0_4 13 2 15   12,[2]
10_0_2_1_3_0_1_0_2_0_1 13 2 15   12,[2]   a 10
10_0_2_2_0_0_4_0_2 13 101 13   12,[2]
10_0_2_2_1_0_2_0_3 13 92 14   12,[2]
10_0_2_2_1_0_3_0_1_0_1 13 4 15   12,[2]   a 10
10_0_2_2_2_0_0_0_4 13 2 15   12,[2]
10_0_2_2_2_0_1_0_2_0_1 13 1 15   12,[2]   a 10 *
10_0_2_3_0_0_2_0_3 13 7 15   12,[2]
10_0_2_3_1_0_0_0_4 13 1 15   12,[2]       *
10_0_2_4_0_0_0_0_4 13 1 15   12,[2]       *
10_0_3_0_0_0_5_0_2 13 7 15   12,[2]
10_0_3_0_0_0_6_0_0_0_1 13 1 15   12,[2]   a 10 *
10_0_3_0_1_0_3_0_3 13 11 15   12,[2]
10_0_3_0_1_0_4_0_1_0_1 13 1 15   12,[2]   a 10 *
10_0_3_0_2_0_1_0_4 13 3 14   12,[2]       *
10_0_3_1_0_0_3_0_3 13 13 14   12,[2]
10_0_3_1_1_0_1_0_4 13 1 15   12,[2]       *
10_1_0_0_1_0_8_0_0 13 2 15   12,[2]
10_1_0_0_2_0_6_0_1 13 10 15   12,[2]
10_1_0_0_3_0_4_0_2 13 21 14   12,[2]
10_1_0_0_4_0_2_0_3 13 1 15   12,[2]       *
10_1_0_1_1_0_6_0_1 13 13 15   12,[2]
10_1_0_1_2_0_4_0_2 13 65 14   12,[2]
10_1_0_1_3_0_2_0_3 13 20 14   12,[2]
10_1_0_1_3_0_3_0_1_0_1 13 1 15   12,[2]   a 10 *
10_1_0_2_0_0_6_0_1 13 2 15   12,[2]
10_1_0_2_1_0_4_0_2 13 31 15   12,[2]
10_1_0_2_2_0_2_0_3 13 38 14   12,[2]
10_1_0_2_2_0_3_0_1_0_1 13 1 15   12,[2]   a 10 *
10_1_0_2_3_0_0_0_4 13 1 15   12,[2]       *
10_1_0_2_3_0_1_0_2_0_1 13 1 15   12,[2]   a 10 *
10_1_0_3_0_0_4_0_2 13 18 14   12,[2]
10_1_0_3_1_0_2_0_3 13 24 14   12,[2]
10_1_0_3_1_0_3_0_1_0_1 13 1 15   12,[2]   a 10 *
10_1_0_4_0_0_2_0_3 13 1 15   12,[2]       *
10_1_1_1_0_0_5_0_2 13 5 15   12,[2]
10_1_1_1_1_0_3_0_3 13 2 15   12,[2]
10_1_1_1_1_0_4_0_1_0_1 13 1 15   12,[2]   a 10 *
10_1_1_1_2_0_1_0_4 13 1 15   12,[2]       *
10_1_1_2_0_0_3_0_3 13 9 15   12,[2]
10_1_1_2_1_0_1_0_4 13 2 15   12,[2]
10_1_1_3_0_0_1_0_4 13 1 15   12,[2]       *
10_0_0_0_6_0_4_0_0 12 675 12   11,[2]   f
10_0_0_0_7_0_2_0_1 12 243 14   11,[2]
10_0_0_0_8_0_0_0_2 12 8 15   11,[2]
10_0_0_1_5_0_4_0_0 12 1836 13   11,[2]
10_0_0_1_6_0_2_0_1 12 895 14   11,[2]
10_0_0_1_7_0_0_0_2 12 20 14   11,[2]
10_0_0_1_7_0_1_0_0_0_1 12 1 15   11,[2]   a 10 *
10_0_0_2_4_0_4_0_0 12 2826 13   11,[2]
10_0_0_2_5_0_2_0_1 12 1470 13   11,[2]
10_0_0_2_6_0_0_0_2 12 64 14   11,[2]
10_0_0_3_3_0_4_0_0 12 2284 13   11,[2]
10_0_0_3_4_0_2_0_1 12 1881 13   11,[2]
10_0_0_3_5_0_0_0_2 12 33 14   11,[2]
10_0_0_3_5_0_1_0_0_0_1 12 4 15   11,[2]   a 10
10_0_0_4_2_0_4_0_0 12 1223 13   11,[2]
10_0_0_4_3_0_2_0_1 12 935 13   11,[2]
10_0_0_4_4_0_0_0_2 12 130 12   11,[2]   a 10, #129
10_0_0_4_4_0_1_0_0_0_1 12 5 15   11,[2]   a 10
10_0_0_5_1_0_4_0_0 12 215 14   11,[2]
10_0_0_5_2_0_2_0_1 12 231 14   11,[2]
10_0_0_5_3_0_0_0_2 12 8 14   11,[2]
10_0_0_5_3_0_1_0_0_0_1 12 1 15   11,[2]   a 10 *
10_0_0_6_0_0_4_0_0 12 48 14   11,[2]
10_0_0_6_1_0_2_0_1 12 67 14   11,[2]
10_0_0_6_2_0_0_0_2 12 1 15   11,[2]       *
10_0_0_7_0_0_2_0_1 12 3 15   11,[2]
10_0_0_7_1_0_0_0_2 12 1 15   11,[2]       *
10_0_1_0_4_0_5_0_0 12 1147 13   11,[2]
10_0_1_0_5_0_3_0_1 12 1411 14   11,[2]
10_0_1_0_6_0_1_0_2 12 104 14   11,[2]
10_0_1_0_6_0_2_0_0_0_1 12 4 15   11,[2]   a 10
10_0_1_0_7_0_0_0_1_0_1 12 1 15   11,[2]   a 10 *
10_0_1_1_3_0_5_0_0 12 2673 13   11,[2]
10_0_1_1_4_0_3_0_1 12 3791 13   11,[2]
10_0_1_1_5_0_1_0_2 12 415 14   11,[2]
10_0_1_1_5_0_2_0_0_0_1 12 13 15   11,[2]   a 10
10_0_1_2_2_0_5_0_0 12 2619 13   11,[2]
10_0_1_2_3_0_3_0_1 12 4802 13   11,[2]
10_0_1_2_4_0_1_0_2 12 638 14   11,[2]
10_0_1_2_4_0_2_0_0_0_1 12 15 15   11,[2]   a 10
10_0_1_2_5_0_0_0_1_0_1 12 1 15   11,[2]   a 10

10_0_1_3_1_0_5_0_0 12 1286 13   11,[2]
10_0_1_3_2_0_3_0_1 12 3991 13   11,[2]
10_0_1_3_3_0_1_0_2 12 582 14   11,[2]
10_0_1_3_3_0_2_0_0_0_1 12 14 15   11,[2]   a 10
10_0_1_4_0_0_5_0_0 12 134 14   11,[2]
10_0_1_4_1_0_3_0_1 12 794 13   11,[2]
10_0_1_4_2_0_1_0_2 12 388 13   11,[2]
10_0_1_4_2_0_2_0_0_0_1 12 12 15   11,[2]   a 10
10_0_1_5_0_0_3_0_1 12 48 14   11,[2]
10_0_1_5_1_0_1_0_2 12 28 14   11,[2]
10_0_2_0_2_0_6_0_0 12 397 14   11,[2]
10_0_2_0_3_0_4_0_1 12 1282 13   11,[2]
10_0_2_0_4_0_2_0_2 12 415 14   11,[2]
10_0_2_0_4_0_3_0_0_0_1 12 21 15   11,[2]   a 10
10_0_2_0_5_0_0_0_3 12 16 14   11,[2]
10_0_2_0_5_0_1_0_1_0_1 12 4 15   11,[2]   a 10
10_0_2_1_1_0_6_0_0 12 446 13   11,[2]
10_0_2_1_2_0_4_0_1 12 2092 13   11,[2]
10_0_2_1_3_0_2_0_2 12 1004 14   11,[2]
10_0_2_1_3_0_3_0_0_0_1 12 19 15   11,[2]   a 10
10_0_2_1_4_0_0_0_3 12 62 14   11,[2]
10_0_2_1_4_0_1_0_1_0_1 12 6 15   11,[2]   a 10
10_0_2_2_0_0_6_0_0 12 366 11   11,[2]
10_0_2_2_1_0_4_0_1 12 1487 13   11,[2]
10_0_2_2_2_0_2_0_2 12 960 13   11,[2]
10_0_2_2_2_0_3_0_0_0_1 12 15 15   11,[2]   a 10
10_0_2_2_3_0_0_0_3 12 63 14   11,[2]
10_0_2_2_3_0_1_0_1_0_1 12 12 15   11,[2]   a 10
10_0_2_3_0_0_4_0_1 12 640 12   11,[2]   a 10, #513
10_0_2_3_1_0_2_0_2 12 570 13   11,[2]
10_0_2_3_1_0_3_0_0_0_1 12 4 15   11,[2]   a 10
10_0_2_3_2_0_0_0_3 12 48 14   11,[2]
10_0_2_4_0_0_2_0_2 12 177 13   11,[2]
10_0_2_4_0_0_3_0_0_0_1 12 2 15   11,[2]   a 10
10_0_2_4_1_0_0_0_3 12 12 14   11,[2]
10_0_3_0_0_0_7_0_0 12 11 15   11,[2]
10_0_3_0_1_0_5_0_1 12 260 14   11,[2]
10_0_3_0_2_0_3_0_2 12 260 13   11,[2]
10_0_3_0_2_0_4_0_0_0_1 12 5 15   11,[2]   a 10
10_0_3_0_3_0_1_0_3 12 22 15   11,[2]
10_0_3_0_3_0_2_0_1_0_1 12 8 15   11,[2]   a 10
10_0_3_1_0_0_5_0_1 12 82 14   11,[2]
10_0_3_1_1_0_3_0_2 12 293 13   11,[2]
10_0_3_1_1_0_4_0_0_0_1 12 5 15   11,[2]   a 10
10_0_3_1_2_0_1_0_3 12 44 14   11,[2]
10_0_3_1_2_0_2_0_1_0_1 12 8 15   11,[2]   a 10
10_0_3_2_0_0_3_0_2 12 87 14   11,[2]
10_0_3_2_1_0_1_0_3 12 30 14   11,[2]
10_0_3_2_1_0_2_0_1_0_1 12 6 15   11,[2]   a 10
10_0_3_3_0_0_1_0_3 12 4 15   11,[2]
10_0_3_3_0_0_2_0_1_0_1 12 2 15   11,[2]   a 10
10_0_4_0_0_0_4_0_2 12 16 14   11,[2]
10_0_4_0_1_0_2_0_3 12 12 15   11,[2]
10_0_4_1_0_0_2_0_3 12 7 15   11,[2]
10_0_4_2_0_0_0_0_4 12 1 15   11,[2]       *
10_1_0_0_3_0_6_0_0 12 71 14   11,[2]
10_1_0_0_4_0_4_0_1 12 213 13   11,[2]
10_1_0_0_5_0_2_0_2 12 87 14   11,[2]
10_1_0_0_5_0_3_0_0_0_1 12 3 15   11,[2]   a 10
10_1_0_0_6_0_0_0_3 12 2 15   11,[2]
10_1_0_0_6_0_1_0_1_0_1 12 1 15   11,[2]   a 10 *
10_1_0_1_2_0_6_0_0 12 125 14   11,[2]
10_1_0_1_3_0_4_0_1 12 516 13   11,[2]
10_1_0_1_4_0_2_0_2 12 274 13   11,[2]
10_1_0_1_4_0_3_0_0_0_1 12 2 15   11,[2]   a 10
10_1_0_1_5_0_0_0_3 12 9 14   11,[2]
10_1_0_2_1_0_6_0_0 12 98 14   11,[2]
10_1_0_2_2_0_4_0_1 12 637 13   11,[2]
10_1_0_2_3_0_2_0_2 12 428 14   11,[2]
10_1_0_2_3_0_3_0_0_0_1 12 4 15   11,[2]   a 10
10_1_0_2_4_0_0_0_3 12 26 14   11,[2]
10_1_0_2_4_0_1_0_1_0_1 12 2 15   11,[2]   a 10
10_1_0_3_0_0_6_0_0 12 23 14   11,[2]
10_1_0_3_1_0_4_0_1 12 381 13   11,[2]
10_1_0_3_2_0_2_0_2 12 402 13   11,[2]
10_1_0_3_2_0_3_0_0_0_1 12 3 15   11,[2]   a 10
10_1_0_3_3_0_0_0_3 12 3 15   11,[2]
10_1_0_3_3_0_1_0_1_0_1 12 4 15   11,[2]   a 10
10_1_0_4_0_0_4_0_1 12 83 13   11,[2]
10_1_0_4_1_0_2_0_2 12 131 13   11,[2]
10_1_0_4_1_0_3_0_0_0_1 12 1 15   11,[2]   a 10 *
10_1_0_4_2_0_0_0_3 12 1 15   11,[2]       *
10_1_0_4_2_0_1_0_1_0_1 12 2 15   11,[2]   a 10
10_1_0_5_0_0_2_0_2 12 14 15   11,[2]
10_1_1_0_1_0_7_0_0 12 6 15   11,[2]
10_1_1_0_2_0_5_0_1 12 58 14   11,[2]
10_1_1_0_3_0_3_0_2 12 97 14   11,[2]
10_1_1_0_3_0_4_0_0_0_1 12 2 15   11,[2]   a 10
10_1_1_0_4_0_1_0_3 12 9 15   11,[2]
10_1_1_0_4_0_2_0_1_0_1 12 7 15   11,[2]   a 10
10_1_1_1_0_0_7_0_0 12 10 14   11,[2]
10_1_1_1_1_0_5_0_1 12 75 14   11,[2]
10_1_1_1_2_0_3_0_2 12 191 14   11,[2]
10_1_1_1_2_0_4_0_0_0_1 12 2 15   11,[2]   a 10
10_1_1_1_3_0_1_0_3 12 41 14   11,[2]
10_1_1_1_3_0_2_0_1_0_1 12 2 15   11,[2]   a 10
10_1_1_2_0_0_5_0_1 12 61 14   11,[2]
10_1_1_2_1_0_3_0_2 12 184 14   11,[2]
10_1_1_2_1_0_4_0_0_0_1 12 3 15   11,[2]   a 10
10_1_1_2_2_0_1_0_3 12 39 14   11,[2]
10_1_1_2_2_0_2_0_1_0_1 12 5 15   11,[2]   a 10
10_1_1_3_0_0_3_0_2 12 99 13   11,[2]
10_1_1_3_1_0_1_0_3 12 21 14   11,[2]
10_1_1_3_1_0_2_0_1_0_1 12 1 15   11,[2]   a 10 *
10_1_1_4_0_0_1_0_3 12 7 14   11,[2]
10_1_1_4_0_0_2_0_1_0_1 12 1 15   11,[2]   a 10 *
10_1_2_0_0_0_6_0_1 12 2 15   11,[2]
10_1_2_0_1_0_4_0_2 12 15 14   11,[2]
10_1_2_0_2_0_2_0_3 12 10 15   11,[2]
10_1_2_1_0_0_4_0_2 12 6 15   11,[2]
10_1_2_1_1_0_2_0_3 12 10 15   11,[2]
10_1_2_1_1_0_3_0_1_0_1 12 3 15   11,[2]   a 10
10_1_2_2_0_0_2_0_3 12 3 15   11,[2]
10_1_3_0_0_0_3_0_3 12 1 15   11,[2]       *
10_2_0_0_0_0_8_0_0 12 1 14   11,[2]   b   *
10_2_0_2_0_0_4_0_2 12 8 14   11,[2]   b 10, #7
10_2_0_2_1_0_2_0_3 12 5 15   11,[2]   c 10
10_2_0_3_0_0_2_0_3 12 12 14   11,[2]   b 10, #4
10_0_0_0_8_0_2_0_0 11 876 13   10,[2]
10_0_0_0_9_0_0_0_1 11 38 14   10,[2]
10_0_0_1_7_0_2_0_0 11 1411 14   10,[2]
10_0_0_1_8_0_0_0_1 11 63 14   10,[2]
10_0_0_2_6_0_2_0_0 11 3091 13   10,[2]
10_0_0_2_7_0_0_0_1 11 149 14   10,[2]
10_0_0_3_5_0_2_0_0 11 4052 13   10,[2]
10_0_0_3_6_0_0_0_1 11 267 14   10,[2]
10_0_0_4_4_0_2_0_0 11 2717 13   10,[2]
10_0_0_4_5_0_0_0_1 11 211 14   10,[2]
10_0_0_5_3_0_2_0_0 11 1061 14   10,[2]
10_0_0_5_4_0_0_0_1 11 65 14   10,[2]
10_0_0_6_2_0_2_0_0 11 445 14   10,[2]
10_0_0_6_3_0_0_0_1 11 90 14   10,[2]
10_0_0_7_1_0_2_0_0 11 10 15   10,[2]
10_0_0_7_2_0_0_0_1 11 2 15   10,[2]
10_0_1_0_6_0_3_0_0 11 4114 13   10,[2]
10_0_1_0_7_0_1_0_1 11 736 14   10,[2]
10_0_1_0_8_0_0_0_0_0_1 11 10 15   10,[2]   a 10
10_0_1_1_5_0_3_0_0 11 7576 13   10,[2]
10_0_1_1_6_0_1_0_1 11 1268 14   10,[2]
10_0_1_1_7_0_0_0_0_0_1 11 2 15   10,[2]   a 10
10_0_1_2_4_0_3_0_0 11 12360 13   10,[2]
10_0_1_2_5_0_1_0_1 11 2910 13   10,[2]
10_0_1_2_6_0_0_0_0_0_1 11 5 15   10,[2]   a 10
10_0_1_3_3_0_3_0_0 11 11580 12   10,[2]
10_0_1_3_4_0_1_0_1 11 4425 13   10,[2]
10_0_1_4_2_0_3_0_0 11 5420 12   10,[2]
10_0_1_4_3_0_1_0_1 11 3079 12   10,[2]   a 10, #1741
10_0_1_4_4_0_0_0_0_0_1 11 31 15   10,[2]   a 10
10_0_1_5_1_0_3_0_0 11 1556 13   10,[2]
10_0_1_5_2_0_1_0_1 11 1051 13   10,[2]
10_0_1_5_3_0_0_0_0_0_1 11 7 15   10,[2]   a 10
10_0_1_6_0_0_3_0_0 11 382 13   10,[2]
10_0_1_6_1_0_1_0_1 11 640 13   10,[2]
10_0_2_0_4_0_4_0_0 11 4182 13   10,[2]
10_0_2_0_5_0_2_0_1 11 2720 13   10,[2]
10_0_2_0_6_0_0_0_2 11 117 14   10,[2]
10_0_2_0_6_0_1_0_0_0_1 11 26 15   10,[2]   a 10
10_0_2_1_3_0_4_0_0 11 7075 12   10,[2]
10_0_2_1_4_0_2_0_1 11 4395 13   10,[2]
10_0_2_1_5_0_0_0_2 11 148 14   10,[2]
10_0_2_1_5_0_1_0_0_0_1 11 5 15   10,[2]   a 10
10_0_2_2_2_0_4_0_0 11 6878 13   10,[2]
10_0_2_2_3_0_2_0_1 11 7268 13   10,[2]
10_0_2_2_4_0_0_0_2 11 176 14   10,[2]
10_0_2_2_4_0_1_0_0_0_1 11 19 15   10,[2]   a 10
10_0_2_3_1_0_4_0_0 11 3245 13   10,[2]
10_0_2_3_2_0_2_0_1 11 5790 12   10,[2]   a 10, #399
10_0_2_3_3_0_0_0_2 11 541 13   10,[2]
10_0_2_3_3_0_1_0_0_0_1 11 22 15   10,[2]   a 10
10_0_2_4_0_0_4_0_0 11 384 13   10,[2]
10_0_2_4_1_0_2_0_1 11 1467 13   10,[2]
10_0_2_4_2_0_0_0_2 11 133 14   10,[2]
10_0_2_4_2_0_1_0_0_0_1 11 45 15   10,[2]   a 10
10_0_2_5_0_0_2_0_1 11 144 14   10,[2]
10_0_2_5_1_0_0_0_2 11 12 15   10,[2]
10_0_2_5_1_0_1_0_0_0_1 11 2 15   10,[2]   a 10
10_0_2_6_0_0_0_0_2 11 4 15   10,[2]
10_0_3_0_2_0_5_0_0 11 1281 12   10,[2]
10_0_3_0_3_0_3_0_1 11 2126 13   10,[2]
10_0_3_0_4_0_1_0_2 11 504 14   10,[2]
10_0_3_0_4_0_2_0_0_0_1 11 20 15   10,[2]   a 10
10_0_3_1_1_0_5_0_0 11 1347 13   10,[2]
10_0_3_1_2_0_3_0_1 11 3267 13   10,[2]
10_0_3_1_3_0_1_0_2 11 541 13   10,[2]
10_0_3_1_3_0_2_0_0_0_1 11 4 15   10,[2]   a 10
10_0_3_2_0_0_5_0_0 11 254 14   10,[2]
10_0_3_2_1_0_3_0_1 11 2191 13   10,[2]
10_0_3_2_2_0_1_0_2 11 1143 13   10,[2]
10_0_3_2_2_0_2_0_0_0_1 11 20 15   10,[2]   a 10
10_0_3_3_0_0_3_0_1 11 461 13   10,[2]
10_0_3_3_1_0_1_0_2 11 486 14   10,[2]
10_0_3_3_1_0_2_0_0_0_1 11 9 15   10,[2]   a 10
10_0_3_3_2_0_0_0_1_0_1 11 5 15   10,[2]   a 10
10_0_3_4_0_0_1_0_2 11 25 14   10,[2]
10_0_3_4_0_0_2_0_0_0_1 11 2 15   10,[2]   a 10
10_0_4_0_0_0_6_0_0 11 146 13   10,[2]
10_0_4_0_1_0_4_0_1 11 443 12   10,[2]   a 10, #416
10_0_4_0_2_0_2_0_2 11 257 14   10,[2]
10_0_4_0_2_0_3_0_0_0_1 11 12 15   10,[2]   a 10
10_0_4_0_3_0_0_0_3 11 36 14   10,[2]
10_0_4_0_3_0_1_0_1_0_1 11 5 15   10,[2]   a 10
10_0_4_1_0_0_4_0_1 11 237 13   10,[2]
10_0_4_1_1_0_2_0_2 11 306 13   10,[2]
10_0_4_1_1_0_3_0_0_0_1 11 3 15   10,[2]   a 10
10_0_4_1_2_0_0_0_3 11 19 14   10,[2]
10_0_4_2_0_0_2_0_2 11 129 14   10,[2]
10_0_4_2_0_0_3_0_0_0_1 11 1 15   10,[2]   a 10 *
10_0_4_2_1_0_0_0_3 11 26 14   10,[2]
10_0_4_2_1_0_1_0_1_0_1 11 1 15   10,[2]   a 10 *
10_0_4_3_0_0_0_0_3 11 4 13   10,[2]
10_0_4_3_0_0_1_0_1_0_1 11 1 15   10,[2]   a 10 *
10_0_5_0_0_0_3_0_2 11 12 14   10,[2]
10_0_5_0_0_0_4_0_0_0_1 11 3 15   10,[2]   a 10
10_0_5_0_1_0_1_0_3 11 6 15   10,[2]
10_0_5_0_2_0_0_0_2_0_1 11 1 15   10,[2]   a 10 *
10_0_5_1_0_0_1_0_3 11 2 15   10,[2]
10_0_5_1_0_0_2_0_1_0_1 11 2 15   10,[2]   a 10
10_1_0_0_5_0_4_0_0 11 970 12   10,[2]
10_1_0_0_6_0_2_0_1 11 557 13   10,[2]
10_1_0_0_7_0_0_0_2 11 40 14   10,[2]
10_1_0_0_7_0_1_0_0_0_1 11 9 15   10,[2]   a 10
10_1_0_1_4_0_4_0_0 11 1904 12   10,[2]
10_1_0_1_5_0_2_0_1 11 1559 12   10,[2]   a 10, #1
10_1_0_1_6_0_0_0_2 11 112 12   10,[2]   a 10, #1
10_1_0_1_6_0_1_0_0_0_1 11 7 15   10,[2]   a 10
10_1_0_2_3_0_4_0_0 11 2987 12   10,[2]
10_1_0_2_4_0_2_0_1 11 3244 12   10,[2]   a 10, #1
10_1_0_2_5_0_0_0_2 11 118 14   10,[2]
10_1_0_2_5_0_1_0_0_0_1 11 4 15   10,[2]   a 10
10_1_0_3_2_0_4_0_0 11 2424 12   10,[2]
10_1_0_3_3_0_2_0_1 11 3312 12   10,[2]   a 10, #2
10_1_0_3_4_0_0_0_2 11 191 13   10,[2]
10_1_0_3_4_0_1_0_0_0_1 11 15 15   10,[2]   a 10
10_1_0_4_1_0_4_0_0 11 1097 12   10,[2]
10_1_0_4_2_0_2_0_1 11 1507 12   10,[2]   a 10, #1
10_1_0_4_3_0_0_0_2 11 61 14   10,[2]
10_1_0_4_3_0_1_0_0_0_1 11 27 15   10,[2]   a 10
10_1_0_5_0_0_4_0_0 11 525 11   10,[2]
10_1_0_5_1_0_2_0_1 11 629 13   10,[2]
10_1_0_5_2_0_0_0_2 11 32 14   10,[2]
10_1_0_5_2_0_1_0_0_0_1 11 1 15   10,[2]   a 10 *
10_1_0_6_0_0_2_0_1 11 395 13   10,[2]
10_1_0_6_1_0_0_0_2 11 47 14   10,[2]
10_1_1_0_3_0_5_0_0 11 543 13   10,[2]
10_1_1_0_4_0_3_0_1 11 985 13   10,[2]
10_1_1_0_5_0_1_0_2 11 336 14   10,[2]
10_1_1_0_5_0_2_0_0_0_1 11 32 15   10,[2]   a 10
10_1_1_0_6_0_0_0_1_0_1 11 15 15   10,[2]   a 10
10_1_1_1_2_0_5_0_0 11 813 13   10,[2]
10_1_1_1_3_0_3_0_1 11 2451 13   10,[2]
10_1_1_1_4_0_1_0_2 11 534 13   10,[2]
10_1_1_1_4_0_2_0_0_0_1 11 27 15   10,[2]   a 10
10_1_1_1_5_0_0_0_1_0_1 11 2 15   10,[2]   a 10
10_1_1_2_1_0_5_0_0 11 738 13   10,[2]
10_1_1_2_2_0_3_0_1 11 3252 12   10,[2]   a 10, #4
10_1_1_2_3_0_1_0_2 11 1208 13   10,[2]
10_1_1_2_3_0_2_0_0_0_1 11 44 15   10,[2]   a 10
10_1_1_2_4_0_0_0_1_0_1 11 1 15   10,[2]   a 10 *
10_1_1_3_0_0_5_0_0 11 259 13   10,[2]
10_1_1_3_1_0_3_0_1 11 1636 13   10,[2]
10_1_1_3_2_0_1_0_2 11 1280 13   10,[2]
10_1_1_3_2_0_2_0_0_0_1 11 60 15   10,[2]   a 10
10_1_1_3_3_0_0_0_1_0_1 11 8 15   10,[2]
10_1_1_4_0_0_3_0_1 11 330 13   10,[2]
10_1_1_4_1_0_1_0_2 11 310 13   10,[2]
10_1_1_4_1_0_2_0_0_0_1 11 16 15   10,[2]   a 10
10_1_1_4_2_0_0_0_1_0_1 11 36 15   10,[2]   a 10
10_1_1_5_0_0_1_0_2 11 21 14   10,[2]
10_1_2_0_1_0_6_0_0 11 77 14   10,[2]
10_1_2_0_2_0_4_0_1 11 408 14   10,[2]
10_1_2_0_3_0_2_0_2 11 292 13   10,[2]
10_1_2_0_3_0_3_0_0_0_1 11 12 15   10,[2]   a 10
10_1_2_0_4_0_0_0_3 11 23 14   10,[2]
10_1_2_0_4_0_1_0_1_0_1 11 12 15   10,[2]   a 10
10_1_2_1_0_0_6_0_0 11 56 14   10,[2]
10_1_2_1_1_0_4_0_1 11 587 13   10,[2]
10_1_2_1_2_0_2_0_2 11 587 13   10,[2]
10_1_2_1_2_0_3_0_0_0_1 11 5 15   10,[2]   a 10
10_1_2_1_3_0_0_0_3 11 12 15   10,[2]
10_1_2_1_3_0_1_0_1_0_1 11 4 15   10,[2]   a 10
10_1_2_2_0_0_4_0_1 11 187 14   10,[2]
10_1_2_2_1_0_2_0_2 11 545 13   10,[2]
10_1_2_2_1_0_3_0_0_0_1 11 17 15   10,[2]   a 10
10_1_2_2_2_0_0_0_3 11 34 14   10,[2]
10_1_2_2_2_0_1_0_1_0_1 11 14 15   10,[2]   a 10
10_1_2_3_0_0_2_0_2 11 116 14   10,[2]
10_1_2_3_0_0_3_0_0_0_1 11 1 15   10,[2]   a 10 *
10_1_2_3_1_0_0_0_3 11 29 13   10,[2]
10_1_2_3_1_0_1_0_1_0_1 11 8 15   10,[2]   a 10
10_1_3_0_0_0_5_0_1 11 26 14   10,[2]
10_1_3_0_1_0_3_0_2 11 58 14   10,[2]
10_1_3_0_1_0_4_0_0_0_1 11 3 15   10,[2]   a 10
10_1_3_0_2_0_1_0_3 11 6 15   10,[2]
10_1_3_1_0_0_3_0_2 11 41 14   10,[2]
10_1_3_1_1_0_1_0_3 11 16 15   10,[2]
10_1_3_2_0_0_1_0_3 11 8 15   10,[2]
10_1_3_2_1_0_0_0_2_0_1 11 1 15   10,[2]   a 10 *
10_1_4_0_0_0_2_0_3 11 1 15   10,[2]       *
10_2_0_0_2_0_6_0_0 11 2 14   10,[2]       *
10_2_0_0_3_0_4_0_1 11 2 15   10,[2]
10_2_0_0_4_0_2_0_2 11 4 15   10,[2]
10_2_0_0_5_0_1_0_1_0_1 11 3 15   10,[2]   a 10
10_2_0_0_6_0_0_0_0_0_2 11 2 15   10,[2]   a 10
10_2_0_1_2_0_4_0_1 11 28 14   10,[2]