-- Main.ebs22 - 2016-01-07 -- Main.srs74 - 2015-12-22

# Pseudomanifold Triangulations on 10 Vertices

### Complex: 10_a_b_c_d_0_e_0_f_0_g

• a= number of vertex links homeomorphic to the sphere
• b= number of vertex links homeomorphic to the real projective plane
• c= number of vertex links homeomorphic to the torus
• d= number of vertex links homeomorphic to the Klein bottle
• e= number of vertex links homeomorphic to the genus three nonorientable surface
• f= number of vertex links homeomorphic to the genus four nonorientable surface
• g= number of vertex links homeomorphic to the genus five nonorientable surface

### Γ - Γ is the minimum of g2 over all triangulations of a three-dimensional normal pseudomanifold with the given singular vertices. A letter in this column indicates that minG2=Γ and the proof is indicated below. A superscript ' indicates that Γ=minG2-1 and 11 vertices are needed to realize Γ.

• a - For any subcomplex Δ' of Δ, g2(Δ) ≥ g2 (Δ'). Usually v is a vertex and Δ'=st(v), so g2(Δ) ≥ g2 (st v) = g2 (link v).
• b - If n is the number of singular vertices, then g2 ≥ 2 χ - ( n-3 choose 3). If n-3 < 3, then the binomial coefficient is interepreted as zero.
• c - If Δ has 8 singular vertices and m of them are Klein bottles, then g2 ≥ 2 χ - 10 + (m/3)
• d - If Δ has 8 singular vertices and any of them are real projective planes, then g2 ≥ 2 χ - 7
• e - If Δ has 8 singular vertices including 3 projective planes and 2 Klein bottles, then g2 ≥ 2 χ - 5
• f - Combine a with the fact that if v and w are two vertices which do not share an edge, then g2(Δ) ≥ g2 (link v) + g2 (link w)

### f-vector - A nonempty entry indicates that all possible f-vectors for complexes with the given singular vertices is known.

Except where otherwise noted, the f-vectors are characterized through h- and g-vectors by, h0=1, h4=1-χ, h3 - h1 = 2 χ, h1 ≥ f0-4, and Γ ≤ g2 ≤ (g1 +1 choose 2), where f0 is the minimum number of vertices required for a complex with the given singularities.

• The first entry is the minimum number of vertices possible for the given singularities
• 10 indicates that the possible f-vectors for PL-homeomorphic complexes for every complex in the group are the same and equal all possible f-vectors for that particular group of singularities
• 10, # indicates that the possible f-vectors of complexes PL-homeomorphic to complex # equals all possible f-vectors for that group of singularities.
• 10, #, β There is no complex with g-vector (5, Γ) for these singularities.
• 9, # indicates that the possible f-vectors of complexes PL-homeomorphic to complex # at http://www.math.cornell.edu/~takhmejanov/pseudoManifolds.html with the same singularities equals all possible f-vectors for that group of singularities.
• 9, #1, α There is no complex with g-vector (4,6) for these singularities.
• 8, N# indicates that the possible f-vectors of complexes PL-homeomorphic to complex N# in "Three-Dimensional Pseudomanifolds on Eight Vertices", B. Datta and N. Nilakantan, Indian J. of Mathematics and Mathematical Sciences, 2008, equals all possible f-vectors for that group of singularities.
• 7, The one-vertex suspension of the six-vertex triangulation of the real projective plane can be used to prove that the f-vectors of the suspension of the real projective plane has the same f-vectors as all complexes with exactly two singular vertices each with link homeomorphic to the real projective plane.
• 5, f-vectors of three-manifolds equal all possible f-vectors of S3.

### ≅ - * indicates that all complexes in this row are known to be PL-homeomorphic.

# Complex χ Triangulations minG2 H1 H2 H3 Γ f-vector delta epsilon
10_10_0_0_0_0_0_0_0_c 0 247882 0*     Z a,b 5 *
10_8_2_0_0_0_0_0_0 1 2259065 3   0,[2]   a 7
10_2_0_8_0_0_0_0_0 8 10883 6   8,[] Z a,b 8,N1
10_2_8_0_0_0_0_0_0 4 269194 6   3,[2]   f 8, N5
10_3_6_0_1_0_0_0_0 4 1627028 6   3,[2]   a 9, #1, α
10_5_4_1_0_0_0_0_0 3 2887846 6   2,[2]   a,b 8,N3
10_6_4_0_0_0_0_0_0 2 947364 6   1,[2]
10_7_2_0_1_0_0_0_0 2 2349640 6   1,[2]   a 9, #1
10_8_0_0_2_0_0_0_0 2 289834 6   1,[2]   a 9, #1
10_8_0_2_0_0_0_0_0 2 182734 6   2,[] Z a 8,N2
10_9_0_0_1_0_0_0_0 1 105737 6   0,[2]   a 9, #1
10_9_0_1_0_0_0_0_0 1 133745 6   Z Z a 8,N4
10_4_4_0_2_0_0_0_0 4 2551116 7   3,[2]   b 9, #1(3402_a)
10_6_2_1_1_0_0_0_0 3 2494364 7   2,[2]
10_2_0_4_4_0_0_0_0 8 20546 8   7,[2]   c
10_2_2_3_3_0_0_0_0 7 85356 8   6,[2]
10_2_4_2_2_0_0_0_0 6 288462 8   5,[2]
10_3_2_0_5_0_0_0_0 6 110106 8   5,[2]   b
10_3_4_1_2_0_0_0_0 5 1032586 8   4,[2]
10_4_4_2_0_0_0_0_0 4 371357 8   3,[2]
10_5_2_0_3_0_0_0_0 4 985297 8   3,[2]   b 9, #1
10_6_0_0_4_0_0_0_0 4 34016 8   3,[2]   b 9, #7
10_0_6_0_4_0_0_0_0 7 26805 9   6,[2]
10_0_6_4_0_0_0_0_0 7 2018 9   6,[2]
10_1_1_6_1_0_1_0_0 9 14302 9   8,[2]   a 10
10_1_3_3_2_0_1_0_0 8 72805 9   7,[2]   a 10, #23
10_1_5_0_3_0_1_0_0 7 126921 9   6,[2]   a 10, #42
10_2_0_5_1_0_2_0_0 9 11781 9   8,[2]   a
10_2_0_6_0_0_2_0_0 9 2861 9   8,[2]   a
10_2_2_1_5_0_0_0_0 7 93197 9   6,[2]
10_2_4_0_4_0_0_0_0 6 252972 9   5,[2]
10_2_4_1_3_0_0_0_0 6 333968 9   5,[2]
10_2_6_0_2_0_0_0_0 5 104806 9   4,[2]
10_2_6_1_1_0_0_0_0 5 287649 9   4,[2]
10_3_2_2_3_0_0_0_0 6 172044 9   5,[2]
10_3_2_3_2_0_0_0_0 6 103081 9   5,[2]
10_3_4_0_3_0_0_0_0 5 202480 9   4,[2]
10_3_4_2_1_0_0_0_0 5 335153 9   4,[2]
10_3_5_0_1_0_1_0_0 5 246321 9   4,[2]   a 10, #174
10_3_6_1_0_0_0_0_0 4 22953 9   3,[2]
10_4_2_1_3_0_0_0_0 5 525949 9   4,[2]   b 9,#1
10_4_2_2_2_0_0_0_0 5 382574 9   4,[2]   b 9,#1
10_4_4_1_1_0_0_0_0 4 421809 9   3,[2]
10_4_5_0_0_0_1_0_0 4 252067 9   4,[2]   a 10, #34463
10_4_6_0_0_0_0_0_0 3 19454 9   2,[2]
10_5_2_1_2_0_0_0_0 4 538955 9   3,[2]
10_5_2_2_1_0_0_0_0 4 417633 9   3,[2]
10_5_3_0_1_0_1_0_0 4 646350 9   3,[2]   a 10, 587417
10_5_4_0_1_0_0_0_0 3 229586 9   2,[2]
10_6_2_0_2_0_0_0_0 3 398219 9   2,[2]
10_6_2_2_0_0_0_0_0 3 16524 9   2,[2]
10_6_3_0_0_0_1_0_0 3 310395 9   2,[2]   a
10_7_0_0_3_0_0_0_0 3 58587 9   2,[2]
10_7_0_1_2_0_0_0_0 3 70748 9   2,[2]
10_7_0_3_0_0_0_0_0 3 31482 9   3,[] Z
10_7_1_0_1_0_1_0_0 3 263610 9   2,[2]   a
10_7_1_1_0_0_1_0_0 3 128652 9   2,[2]   a
10_7_2_1_0_0_0_0_0 2 71930 9   1,[2]
10_8_0_0_0_0_2_0_0 3 20402 9   2,[2]   a
10_8_1_0_0_0_1_0_0 2 83131 9   1,[2]   a
10_0_4_3_3_0_0_0_0 8 25954 10   7,[2]
10_1_0_0_9_0_0_0_0 9 447 10   8,[2]   f
10_1_0_1_8_0_0_0_0 9 1743 10   8,[2]   f
10_1_0_3_6_0_0_0_0 9 5697 10   8,[2]   f
10_1_0_5_4_0_0_0_0 9 7808 10   8,[2]   f
10_1_0_9_0_0_0_0_0 9 712 10   9,[] Z f
10_1_1_2_5_0_1_0_0 9 38543 10   8,[2]
10_1_2_2_5_0_0_0_0 8 55001 10   7,[2]
10_1_2_3_4_0_0_0_0 8 29773 10   7,[2]
10_1_2_4_3_0_0_0_0 8 34160 10   7,[2]
10_1_2_5_0_0_2_0_0 9 10947 10   8,[2]
10_1_4_0_5_0_0_0_0 7 59973 10   6,[2]
10_1_4_1_4_0_0_0_0 7 103769 10   6,[2]
10_1_4_2_3_0_0_0_0 7 88178 10   6,[2]
10_1_4_3_2_0_0_0_0 7 58935 10   6,[2]
10_1_4_4_1_0_0_0_0 7 9814 10   6,[2]
10_1_6_0_3_0_0_0_0 6 117313 10   5,[2]
10_1_6_1_2_0_0_0_0 6 89386 10   5,[2]
10_1_6_2_1_0_0_0_0 6 47066 10   5,[2]
10_1_7_0_1_0_1_0_0 6 54573 10   5,[2]
10_1_8_0_1_0_0_0_0 5 7002 10   4,[2]
10_1_8_1_0_0_0_0_0 5 13409 10   4,[2]
10_2_0_0_8_0_0_0_0 8 465 10   7,[2]
10_2_0_2_4_0_2_0_0 9 8297 10   8,[2]   c
10_2_0_4_2_0_2_0_0 9 5700 10   8,[2]
10_2_1_2_4_0_1_0_0 8 51476 10   7,[2]
10_2_1_4_2_0_1_0_0 8 20783 10   7,[2]
10_2_2_0_4_0_2_0_0 8 32326 10   7,[2]
10_2_2_0_6_0_0_0_0 7 27168 10   6,[2]
10_2_2_2_2_0_2_0_0 8 68081 10   7,[2]
10_2_2_2_4_0_0_0_0 7 76388 10   6,[2]
10_2_2_4_2_0_0_0_0 7 35836 10   6,[2]
10_2_3_0_4_0_1_0_0 7 126451 10   6,[2]
10_2_3_1_3_0_1_0_0 7 229325 10   6,[2]
10_2_3_2_2_0_1_0_0 7 171139 10   6,[2]
10_2_3_3_1_0_1_0_0 7 53058 10   6,[2]
10_2_4_0_2_0_2_0_0 7 102349 10   6,[2]
10_2_4_2_0_0_2_0_0 7 34309 10   6,[2]
10_2_4_3_1_0_0_0_0 6 55765 10   5,[2]
10_2_4_4_0_0_0_0_0 6 13989 10   5,[2]
10_2_5_0_2_0_1_0_0 6 330437 10   5,[2]   a' 10, #27,β
10_2_5_1_1_0_1_0_0 6 178262 10   5,[2]
10_2_5_2_0_0_1_0_0 6 56019 10   5,[2]
10_2_6_0_0_0_2_0_0 6 33116 10   5,[2]
10_2_6_2_0_0_0_0_0 5 27283 10   4,[2]
10_2_7_0_0_0_1_0_0 5 26373 10   4,[2]
10_3_0_1_6_0_0_0_0 7 3658 10   6,[2]   b
10_3_0_2_5_0_0_0_0 7 4911 10   6,[2]   b
10_3_0_3_4_0_0_0_0 7 8345 10   6,[2]   b
10_3_0_4_3_0_0_0_0 7 9803 10   6,[2]   b
10_3_0_7_0_0_0_0_0 7 3944 10   7,[] Z b
10_3_1_1_4_0_1_0_0 7 55842 10   6,[2]   b
10_3_1_3_2_0_1_0_0 7 43011 10   6,[2]   b
10_3_2_1_4_0_0_0_0 6 197458 10   5,[2]
10_3_2_4_1_0_0_0_0 6 13339 10   5,[2]
10_3_3_0_3_0_1_0_0 6 333695 10   5,[2]   a' 10, #189,β
10_3_3_1_2_0_1_0_0 6 360166 10   5,[2]
10_3_3_2_1_0_1_0_0 6 195005 10   5,[2]
10_3_3_3_0_0_1_0_0 6 37691 10   5,[2]
10_3_4_0_1_0_2_0_0 6 143469 10   5,[2]
10_3_4_3_0_0_0_0_0 5 38181 10   4,[2]
10_3_5_1_0_0_1_0_0 5 155420 10   4,[2]
10_4_2_0_4_0_0_0_0 5 89870 10   4,[2]
10_4_2_3_1_0_0_0_0 5 39790 10   4,[2]
10_4_3_0_2_0_1_0_0 5 342917 10   4,[2]
10_4_3_1_1_0_1_0_0 5 569707 10   4,[2]
10_4_3_2_0_0_1_0_0 5 124057 10   4,[2]
10_4_4_0_0_0_2_0_0 5 70809 10   4,[2]
10_5_0_1_4_0_0_0_0 5 37552 10   4,[2]   b
10_5_0_2_3_0_0_0_0 5 33620 10   4,[2]   b
10_5_0_5_0_0_0_0_0 5 9557 10   5,[] Z b 9
10_5_1_1_2_0_1_0_0 5 150268 10   4,[2]   b
10_5_3_1_0_0_1_0_0 4 258534 10   3,[2]
10_6_0_1_3_0_0_0_0 4 37636 10   3,[2]
10_6_0_2_2_0_0_0_0 4 19452 10   3,[2]
10_6_0_4_0_0_0_0_0 4 13915 10   4,[] Z
10_6_1_0_2_0_1_0_0 4 155755 10   3,[2]
10_6_1_1_1_0_1_0_0 4 200588 10   3,[2]
10_6_2_0_0_0_2_0_0 4 70076 10   3,[2]
10_10_0_0_0_0_0_0_0_a 0 177 10 Z Z Z     *
10_10_0_0_0_0_0_0_0_b 0 615 10 Z 0,[2]       *
10_0_2_2_0_0_6_0_0 12 366 11   11,[2]
10_0_2_2_6_0_0_0_0 9 15996 11   8,[2]
10_0_2_6_2_0_0_0_0 9 4543 11   8,[2]
10_0_3_6_0_0_1_0_0 9 3483 11   8,[2]
10_0_4_0_6_0_0_0_0 8 5706 11   7,[2]
10_0_4_1_5_0_0_0_0 8 15194 11   7,[2]
10_0_5_2_2_0_1_0_0 8 29269 11   7,[2]
10_0_5_3_1_0_1_0_0 8 10551 11   7,[2]
10_0_6_2_2_0_0_0_0 7 12718 11   6,[2]
10_0_7_0_2_0_1_0_0 7 19515 11   6,[2]
10_0_8_2_0_0_0_0_0 6 871 11   5,[2]
10_1_0_0_7_0_2_0_0 10 1586 11   9,[2]
10_1_0_2_5_0_2_0_0 10 9413 11   9,[2]
10_1_0_2_7_0_0_0_0 9 2967 11   8,[2]
10_1_0_3_4_0_2_0_0 10 11726 11   9,[2]
10_1_0_4_3_0_2_0_0 10 7136 11   9,[2]
10_1_0_4_5_0_0_0_0 9 1005 11   8,[2]
10_1_0_5_0_0_4_0_0 11 525 11   10,[2]
10_1_0_6_1_0_2_0_0 10 2213 11   9,[2]
10_1_0_6_3_0_0_0_0 9 263 11   8,[2]
10_1_1_0_7_0_1_0_0 9 5128 11   8,[2]
10_1_1_1_6_0_1_0_0 9 20132 11   8,[2]
10_1_1_3_4_0_1_0_0 9 21720 11   8,[2]
10_1_1_4_3_0_1_0_0 9 15013 11   8,[2]
10_1_1_5_2_0_1_0_0 9 13397 11   8,[2]
10_1_2_0_5_0_2_0_0 9 22280 11   8,[2]
10_1_2_0_7_0_0_0_0 8 4603 11   7,[2]
10_1_2_1_4_0_2_0_0 9 55410 11   8,[2]
10_1_2_1_6_0_0_0_0 8 20582 11   7,[2]
10_1_2_2_1_0_4_0_0 10 4424 11   9,[2]
10_1_2_2_3_0_2_0_0 9 56995 11   8,[2]
10_1_2_3_2_0_2_0_0 9 27665 11   8,[2]
10_1_2_5_2_0_0_0_0 8 4955 11   7,[2]
10_1_3_0_3_0_3_0_0 9 24509 11   8,[2]
10_1_3_0_5_0_1_0_0 8 39438 11   7,[2]
10_1_3_1_4_0_1_0_0 8 101203 11   7,[2]
10_1_3_2_3_0_1_0_0 8 134587 11   7,[2]
10_1_3_4_1_0_1_0_0 8 12310 11   7,[2]
10_1_4_0_3_0_2_0_0 8 57049 11   7,[2]
10_1_4_1_2_0_2_0_0 8 75053 11   7,[2]
10_1_4_2_1_0_2_0_0 8 40286 11   7,[2]
10_1_5_0_1_0_3_0_0 8 13331 11   7,[2]
10_1_5_1_2_0_1_0_0 7 101261 11   6,[2]
10_1_5_2_1_0_1_0_0 7 62585 11   6,[2]
10_1_5_3_0_0_1_0_0 7 13489 11   6,[2]
10_1_6_0_1_0_2_0_0 7 34729 11   6,[2]
10_1_6_1_0_0_2_0_0 7 11028 11   6,[2]
10_1_6_3_0_0_0_0_0 6 5894 11   5,[2]
10_1_7_1_0_0_1_0_0 6 8646 11   5,[2]
10_2_0_2_6_0_0_0_0 8 5411 11   7,[2]
10_2_0_3_3_0_2_0_0 9 6513 11   8,[2]
10_2_1_0_6_0_1_0_0 8 8682 11   7,[2]
10_2_1_1_5_0_1_0_0 8 29384 11   7,[2]
10_2_1_3_3_0_1_0_0 8 28443 11   7,[2]
10_2_2_1_3_0_2_0_0 8 73750 11   7,[2]
10_2_2_3_1_0_2_0_0 8 17457 11   7,[2]
10_2_2_4_0_0_2_0_0 8 4685 11   7,[2]
10_2_3_0_2_0_3_0_0 8 22217 11   7,[2]   e 10, #2
10_2_3_1_1_0_3_0_0 8 20501 11   7,[2]
10_2_3_4_0_0_1_0_0 7 3770 11   6,[2]
10_2_4_1_1_0_2_0_0 7 81264 11   6,[2]
10_2_5_0_0_0_3_0_0 7 9193 11   6,[2]
10_3_1_0_5_0_1_0_0 7 17829 11   6,[2]
10_3_1_2_3_0_1_0_0 7 43345 11   6,[2]
10_3_2_0_3_0_2_0_0 7 47237 11   6,[2]
10_3_2_1_2_0_2_0_0 7 69914 11   6,[2]
10_3_2_2_1_0_2_0_0 7 47236 11   6,[2]
10_3_2_3_0_0_2_0_0 7 3951 11   6,[2]
10_3_3_0_1_0_3_0_0 7 15004 11   6,[2]
10_3_3_1_0_0_3_0_0 7 10786 11   6,[2]
10_3_4_1_0_0_2_0_0 6 51976 11   5,[2]
10_4_0_0_6_0_0_0_0 6 2025 11   5,[2]   b 10, #74
10_4_0_1_5_0_0_0_0 6 6203 11   5,[2]   b 10, #1
10_4_0_2_4_0_0_0_0 6 9125 11   5,[2]   b 10, #98
10_4_0_3_3_0_0_0_0 6 3342 11   5,[2]   b 10, #7
10_4_0_6_0_0_0_0_0 6 1166 11   6,[] Z b 10, #1
10_4_1_0_4_0_1_0_0 6 61939 11   5,[2]   b 10, #427
10_4_1_1_3_0_1_0_0 6 85915 11   5,[2]   b 10, #613
10_4_1_2_2_0_1_0_0 6 70427 11   5,[2]   b 10, #531
10_4_1_3_1_0_1_0_0 6 35231 11   5,[2]   b 10, #674
10_4_2_0_2_0_2_0_0 6 72804 11   5,[2]   b 10, #335
10_4_2_1_1_0_2_0_0 6 60392 11   5,[2]   b 10, #149
10_4_2_2_0_0_2_0_0 6 17830 11   5,[2]   b 10, #510
10_5_0_0_5_0_0_0_0 5 3154 11   4,[2]
10_5_1_0_3_0_1_0_0 5 74955 11   4,[2]
10_5_1_2_1_0_1_0_0 5 63959 11   4,[2]
10_5_2_0_1_0_2_0_0 5 71414 11   4,[2]
10_5_2_1_0_0_2_0_0 5 46869 11   4,[2]
10_6_0_0_2_0_2_0_0 5 5034 11   4,[2]
10_6_0_1_1_0_2_0_0 5 7936 11   4,[2]
10_0_0_0_6_0_4_0_0 12 675 12   11,[2]   f
10_0_0_4_4_0_0_0_2 12 130 12   11,[2]   a 10, #129
10_0_1_1_7_0_1_0_0 10 3824 12   9,[2]
10_0_1_2_6_0_1_0_0 10 10053 12   9,[2]
10_0_1_3_3_0_3_0_0 11 11580 12   10,[2]
10_0_1_3_5_0_1_0_0 10 10635 12   9,[2]
10_0_1_4_2_0_3_0_0 11 5420 12   10,[2]
10_0_1_4_3_0_1_0_1 11 3079 12   10,[2]   a 10, #1741
10_0_1_4_4_0_1_0_0 10 8083 12   9,[2]
10_0_1_5_3_0_1_0_0 10 3308 12   9,[2]
10_0_1_6_2_0_1_0_0 10 2227 12   9,[2]
10_0_2_0_6_0_2_0_0 10 8500 12   9,[2]
10_0_2_0_8_0_0_0_0 9 1949 12   8,[2]
10_0_2_1_3_0_4_0_0 11 7075 12   10,[2]
10_0_2_1_7_0_0_0_0 9 5320 12   8,[2]
10_0_2_2_4_0_2_0_0 10 24347 12   9,[2]
10_0_2_3_0_0_4_0_1 12 640 12   11,[2]   a 10, #513
10_0_2_3_2_0_2_0_1 11 5790 12   10,[2]   a 10, #399
10_0_2_3_3_0_2_0_0 10 20819 12   9,[2]
10_0_2_3_5_0_0_0_0 9 8223 12   8,[2]
10_0_2_4_2_0_2_0_0 10 10933 12   9,[2]
10_0_2_4_4_0_0_0_0 9 4886 12   8,[2]
10_0_2_5_2_0_0_0_1 10 972 12   9,[2]   a 10, #502
10_0_2_5_3_0_0_0_0 9 3041 12   8,[2]
10_0_2_6_0_0_2_0_0 10 1124 12   9,[2]
10_0_3_0_2_0_5_0_0 11 1281 12   10,[2]
10_0_3_0_4_0_3_0_0 10 13243 12   9,[2]
10_0_3_0_6_0_1_0_0 9 11659 12   8,[2]
10_0_3_1_3_0_3_0_0 10 14867 12   9,[2]
10_0_3_1_5_0_1_0_0 9 31459 12   8,[2]
10_0_3_2_4_0_1_0_0 9 38699 12   8,[2]
10_0_3_3_1_0_3_0_0 10 8666 12   9,[2]
10_0_3_3_3_0_1_0_0 9 19789 12   8,[2]
10_0_3_4_2_0_1_0_0 9 6845 12   8,[2]
10_0_3_5_1_0_1_0_0 9 2558 12   8,[2]
10_0_4_0_1_0_4_0_1 11 443 12   10,[2]   a 10, #416
10_0_4_0_2_0_4_0_0 10 4445 12   9,[2]
10_0_4_0_4_0_2_0_0 9 22467 12   8,[2]
10_0_4_0_5_0_0_0_1 9 2117 12   8,[2]   a 10, #1715
10_0_4_1_3_0_2_0_0 9 34775 12   8,[2]
10_0_4_2_0_0_4_0_0 10 1061 12   9,[2]
10_0_4_2_2_0_2_0_0 9 23539 12   8,[2]
10_0_4_2_3_0_0_0_1 9 3527 12   8,[2]   a 10, #2312
10_0_4_2_4_0_0_0_0 8 29990 12   7,[2]
10_0_4_3_0_0_2_0_1 10 1143 12   9,[2]   a 10, #165
10_0_4_3_1_0_2_0_0 9 6925 12   8,[2]
10_0_4_4_1_0_0_0_1 9 445 12   8,[2]   a 10, #388
10_0_4_4_2_0_0_0_0 8 9219 12   7,[2]
10_0_5_0_2_0_3_0_0 9 9484 12   8,[2]
10_0_5_0_4_0_1_0_0 8 19240 12   7,[2]
10_0_5_1_1_0_3_0_0 9 5870 12   8,[2]
10_0_5_1_3_0_1_0_0 8 31917 12   7,[2]
10_0_5_2_0_0_3_0_0 9 2213 12   8,[2]
10_0_6_0_0_0_4_0_0 9 552 12   8,[2]
10_0_6_0_2_0_2_0_0 8 13305 12   7,[2]
10_0_6_1_1_0_2_0_0 8 9272 12   7,[2]
10_0_6_1_2_0_0_0_1 8 1925 12   7,[2]   a 10, #1346
10_0_6_1_3_0_0_0_0 7 14335 12   6,[2]
10_0_6_2_0_0_2_0_0 8 1898 12   7,[2]
10_0_6_3_0_0_0_0_1 8 211 12   7,[2]   a 10, #160
10_0_6_3_1_0_0_0_0 7 7718 12   6,[2]
10_0_7_1_1_0_1_0_0 7 6950 12   6,[2]
10_0_7_2_0_0_1_0_0 7 2001 12   6,[2]
10_0_8_0_0_0_2_0_0 7 1254 12   6,[2]
10_0_8_0_1_0_0_0_1 7 693 12   6,[2]   a 10, #645
10_0_8_0_2_0_0_0_0 6 11784 12   5,[2]
10_0_8_1_1_0_0_0_0 6 989 12   5,[2]
10_0_9_0_0_0_1_0_0 6 686 12   5,[2]
10_1_0_0_5_0_4_0_0 11 970 12   10,[2]
10_1_0_1_4_0_4_0_0 11 1904 12   10,[2]
10_1_0_1_5_0_2_0_1 11 1559 12   10,[2]   a 10, #1
10_1_0_1_6_0_0_0_2 11 112 12   10,[2]   a 10, #1
10_1_0_1_6_0_2_0_0 10 4184 12   9,[2]
10_1_0_2_3_0_4_0_0 11 2987 12   10,[2]
10_1_0_2_4_0_2_0_1 11 3244 12   10,[2]   a 10, #1
10_1_0_3_2_0_4_0_0 11 2424 12   10,[2]
10_1_0_3_3_0_2_0_1 11 3312 12   10,[2]   a 10, #2
10_1_0_3_5_0_0_0_1 10 776 12   9,[2]   a 10, #2
10_1_0_4_1_0_4_0_0 11 1097 12   10,[2]
10_1_0_4_2_0_2_0_1 11 1507 12   10,[2]   a 10, #1
10_1_0_5_2_0_2_0_0 10 2559 12   9,[2]
10_1_0_5_3_0_0_0_1 10 944 12   9,[2]   a 10, #4
10_1_1_0_5_0_3_0_0 10 5601 12   9,[2]
10_1_1_1_4_0_3_0_0 10 11024 12   9,[2]
10_1_1_1_5_0_1_0_1 10 4364 12   9,[2]   a 10,#1
10_1_1_2_2_0_3_0_1 11 3252 12   10,[2]   a 10, #4
10_1_1_2_3_0_3_0_0 10 15110 12   9,[2]
10_1_1_2_4_0_1_0_1 10 7662 12   9,[2]   a 10, #2
10_1_1_3_2_0_3_0_0 10 13538 12   9,[2]
10_1_1_3_3_0_1_0_1 10 6347 12   9,[2]   a 10, #18
10_1_1_4_1_0_3_0_0 10 3913 12   9,[2]
10_1_1_4_2_0_1_0_1 10 5510 12   9,[2]   a 10, #41
10_1_1_5_0_0_3_0_0 10 1151 12   9,[2]
10_1_1_5_1_0_1_0_1 10 1802 12   9,[2]   a 10, #33
10_1_1_7_0_0_1_0_0 9 41 12   8,[2]
10_1_2_0_3_0_4_0_0 10 5484 12   9,[2]
10_1_2_0_6_0_0_0_1 9 2088 12   8,[2]   a 10,#3
10_1_2_1_3_0_2_0_1 10 8112 12   9,[2]   a 10, #1
10_1_2_1_5_0_0_0_1 9 4758 12   8,[2]   a 10, #4
10_1_2_2_4_0_0_0_1 9 10018 12   8,[2]   a 10, #29
10_1_2_3_0_0_4_0_0 10 1283 12   9,[2]
10_1_2_3_1_0_2_0_1 10 6093 12   9,[2]   a 10, #28
10_1_2_4_1_0_2_0_0 9 5678 12   8,[2]
10_1_2_4_2_0_0_0_1 9 2425 12   8,[2]   a 10, #5
10_1_3_0_4_0_1_0_1 9 10517 12   8,[2]   a 10, #70
10_1_3_1_2_0_3_0_0 9 27157 12   8,[2]
10_1_3_1_3_0_1_0_1 9 16559 12   8,[2]   a 10, #25
10_1_3_2_0_0_3_0_1 10 922 12   9,[2]   a 10, #6
10_1_3_2_1_0_3_0_0 9 16413 12   8,[2]
10_1_3_2_2_0_1_0_1 9 12819 12   8,[2]   a 10, #28
10_1_3_3_0_0_1_0_2 10 502 12   9,[2]   a 10, #143
10_1_3_3_0_0_3_0_0 9 1883 12   8,[2]
10_1_3_3_1_0_1_0_1 9 6406 12   8,[2]   a 10, #48
10_1_3_5_0_0_1_0_0 8 2164 12   7,[2]
10_1_4_0_1_0_4_0_0 9 3992 12   8,[2]
10_1_4_0_2_0_2_0_1 9 8609 12   8,[2]   a 10, #21
10_1_4_0_4_0_0_0_1 8 5679 12   7,[2]   a 10, #31
10_1_4_1_0_0_4_0_0 9 1523 12   8,[2]
10_1_4_1_1_0_2_0_1 9 5151 12   8,[2]   a 10, #33
10_1_4_1_3_0_0_0_1 8 12049 12   7,[2]   a 10, #8
10_1_4_2_0_0_2_0_1 9 1839 12   8,[2]   a 10, #21
10_1_4_2_2_0_0_0_1 8 10059 12   7,[2]   a 10, #19
10_1_4_3_0_0_2_0_0 8 5235 12   7,[2]
10_1_4_3_1_0_0_0_1 8 2754 12   7,[2]   a 10, #3
10_1_5_0_2_0_1_0_1 8 10866 12   7,[2]   a 10, #43
10_1_5_1_0_0_3_0_0 8 4900 12   7,[2]
10_1_5_1_1_0_1_0_1 8 8881 12   7,[2]   a 10, #41
10_1_5_2_0_0_1_0_1 8 1978 12   7,[2]   a 10, #1
10_1_6_0_2_0_0_0_1 7 6499 12   6,[2]   a 10, #9
10_1_6_2_0_0_0_0_1 7 1828 12   6,[2]   a 10, #27
10_1_8_0_0_0_0_0_1 6 892 12   5,[2]   a 10, #2
10_2_0_0_6_0_2_0_0 9 1070 12   8,[2]
10_2_0_1_5_0_2_0_0 9 3786 12   8,[2]
10_2_0_1_7_0_0_0_0 8 1288 12   7,[2]
10_2_0_2_2_0_4_0_0 10 793 12   9,[2]
10_2_0_2_4_0_0_0_2 10 359 12   9,[2]   a,c 10, #1
10_2_0_2_5_0_0_0_1 9 1452 12   8,[2]   a 10, #1
10_2_0_3_1_0_4_0_0 10 605 12   9,[2]
10_2_0_3_2_0_2_0_1 10 2106 12   9,[2]   a 10, #40
10_2_0_3_5_0_0_0_0 8 1908 12   7,[2]
10_2_0_4_0_0_4_0_0 10 343 12   9,[2]
10_2_0_4_1_0_2_0_1 10 1315 12   9,[2]   a 10, #1
10_2_0_4_2_0_0_0_2 10 582 12   9,[2]   a 10, #288
10_2_0_4_3_0_0_0_1 9 1114 12   8,[2]   a 10, #27
10_2_0_5_0_0_2_0_1 10 594 12   9,[2]   a 10, #27
10_2_0_5_1_0_0_0_2 10 311 12   9,[2]   a 10, #1
10_2_0_5_2_0_0_0_1 9 400 12   8,[2]   a 10, #5
10_2_0_5_3_0_0_0_0 8 1507 12   7,[2]
10_2_1_0_4_0_3_0_0 9 4099 12   8,[2]
10_2_1_0_5_0_1_0_1 9 1836 12   8,[2]   a 10, #3
10_2_1_1_3_0_3_0_0 9 9136 12   8,[2]   d' 10, #11, β
10_2_1_1_4_0_1_0_1 9 5008 12   8,[2]   a 10, #18
10_2_1_2_2_0_3_0_0 9 7699 12   8,[2]
10_2_1_2_3_0_1_0_1 9 5532 12   8,[2]   a 10, #5
10_2_1_3_1_0_3_0_0 9 2297 12   8,[2]
10_2_1_3_2_0_1_0_1 9 3866 12   8,[2]   a 10, #44
10_2_1_4_1_0_1_0_1 9 648 12   8,[2]   a 10, #1
10_2_1_5_1_0_1_0_0 8 3791 12   7,[2]
10_2_2_0_2_0_4_0_0 9 3182 12   8,[2]
10_2_2_0_3_0_2_0_1 9 4067 12   8,[2]   a 10, #504
10_2_2_0_5_0_0_0_1 8 3475 12   7,[2]   a 10, #29
10_2_2_1_1_0_4_0_0 9 2647 12   8,[2]
10_2_2_1_2_0_2_0_1 9 5624 12   8,[2]   a 10, #46
10_2_2_1_4_0_0_0_1 8 11482 12   7,[2]   a 10, #66
10_2_2_2_1_0_2_0_1 9 4304 12   8,[2]   a 10, #33
10_2_2_2_3_0_0_0_1 8 11799 12   7,[2]   a 10, #35
10_2_2_3_2_0_0_0_1 8 4065 12   7,[2]   a 10,#36
10_2_2_4_1_0_0_0_1 8 2650 12   7,[2]   a 10, #17
10_2_2_5_1_0_0_0_0 7 225 12   6,[2]
10_2_3_0_3_0_1_0_1 8 13619 12   7,[2]   a 10, #127
10_2_3_1_2_0_1_0_1 8 20843 12   7,[2]   a 10, #85
10_2_3_2_0_0_3_0_0 8 4123 12   7,[2]
10_2_3_2_1_0_1_0_1 8 10016 12   7,[2]   a 10, #2
10_2_4_0_0_0_4_0_0 8 1264 12   7,[2]
10_2_4_0_1_0_2_0_1 8 6666 12   7,[2]   a 10, #18
10_2_4_0_3_0_0_0_1 7 17718 12   6,[2]   a 10, #142
10_2_4_1_0_0_2_0_1 8 3015 12   7,[2]   a 10, #17
10_2_4_1_2_0_0_0_1 7 21763 12   6,[2]   a 10, #57
10_2_4_2_1_0_0_0_1 7 12940 12   6,[2]   a 10, #54
10_2_4_3_0_0_0_0_1 7 2063 12   6,[2]   a 10, #4
10_2_5_0_1_0_1_0_1 7 12947 12   6,[2]   a 10, #83
10_2_5_1_0_0_1_0_1 7 5048 12   6,[2]   a 10, #31
10_2_6_0_1_0_0_0_1 6 10360 12   5,[2]   a 10, #113
10_2_6_1_0_0_0_0_1 6 2697 12   5,[2]   a 10, #8
10_3_0_0_7_0_0_0_0 7 605 12   6,[2]
10_3_0_1_4_0_2_0_0 8 2593 12   7,[2]   b 10. #5
10_3_0_2_3_0_2_0_0 8 3563 12   7,[2]   b 10, #105
10_3_0_2_4_0_0_0_1 8 1379 12   7,[2]   a,b 10, #78
10_3_0_3_2_0_2_0_0 8 1460 12   7,[2]   b 10, #18
10_3_0_4_1_0_2_0_0 8 2064 12   7,[2]   b 10, #500
10_3_0_4_2_0_0_0_1 8 1147 12   7,[2]   a,b 10, #57
10_3_1_0_3_0_3_0_0 8 3323 12   7,[2]   b 10, #10
10_3_1_1_2_0_3_0_0 8 5949 12   7,[2]   b 10, #1377
10_3_1_2_1_0_3_0_0 8 3667 12   7,[2]   b 10, #107
10_3_1_3_0_0_3_0_0 8 895 12   7,[2]   b 10, #81
10_3_1_4_1_0_1_0_0 7 3237 12   6,[2]
10_3_2_0_1_0_4_0_0 8 1557 12   7,[2]   b 10, #23
10_3_2_0_4_0_0_0_1 7 7566 12   6,[2]   a 10, #100
10_3_2_1_3_0_0_0_1 7 16349 12   6,[2]   a 10, #35
10_3_2_2_2_0_0_0_1 7 12008 12   6,[2]   a 10, #199
10_3_2_3_1_0_0_0_1 7 4206 12   6,[2]   a 10, #47
10_3_3_0_2_0_1_0_1 7 16159 12   6,[2]   a 10, #43
10_3_3_1_1_0_1_0_1 7 15415 12   6,[2]   a 10, #17
10_3_3_2_0_0_1_0_1 7 5366 12   6,[2]   a 10, #28
10_3_4_0_2_0_0_0_1 6 32206 12   5,[2]   a 10, #89
10_3_4_1_1_0_0_0_1 6 20534 12   5,[2]   a 10, #207
10_3_4_2_0_0_0_0_1 6 9767 12   5,[2]   a 10, #123
10_3_5_0_0_0_1_0_1 6 8883 12   5,[2]   a 10, #225
10_3_6_0_0_0_0_0_1 5 4864 12   4,[2]   a 10, #239
10_4_0_4_2_0_0_0_0 6 629 12   5,[2]
10_4_2_0_3_0_0_0_1 6 14746 12   5,[2]   a 10, #156
10_4_2_1_2_0_0_0_1 6 18606 12   5,[2]   a 10, #188
10_4_2_2_1_0_0_0_1 6 11446 12   5,[2]   a 10, #179
10_4_3_0_0_0_3_0_0 6 9241 12   5,[2]
10_4_3_0_1_0_1_0_1 6 18998 12   5,[2]   a 10, #48
10_4_4_0_1_0_0_0_1 5 25973 12   4,[2]   a 10, #286
10_4_4_1_0_0_0_0_1 5 11459 12   4,[2]   a 10, #181
10_5_0_0_3_0_2_0_0 6 5311 12   5,[2]   b 10, #4880
10_5_0_1_2_0_2_0_0 6 4892 12   5,[2]   b 10, #100
10_5_0_2_1_0_2_0_0 6 5061 12   5,[2]   b 10, #103
10_5_0_3_2_0_0_0_0 5 398 12   4,[2]
10_5_1_0_1_0_3_0_0 6 2906 12   5,[2]   b 10, #2902
10_5_1_1_0_0_3_0_0 6 1562 12   5,[2]   b 10, #12
10_5_2_0_2_0_0_0_1 5 21094 12   4,[2]   a 10, #145
10_5_2_1_1_0_0_0_1 5 20289 12   4,[2]   a 10, #625
10_5_2_2_0_0_0_0_1 5 7051 12   4,[2]   a 10, #205
10_5_2_3_0_0_0_0_0 4 473 12   3,[2]
10_5_3_0_0_0_1_0_1 5 13149 12   4,[2]   a 10, #274
10_5_4_0_0_0_0_0_1 4 12477 12   3,[2]   a 10, #293
10_6_1_2_0_0_1_0_0 4 4894 12   3,[2]
10_6_2_0_1_0_0_0_1 4 24763 12   3,[2]   a 10, #249
10_6_2_1_0_0_0_0_1 4 10506 12   3,[2]   a 10, #204
10_7_0_0_1_0_2_0_0 4 5656 12   3,[2]
10_7_0_0_2_0_0_0_1 4 3758 12   3,[2]   a 10, #71
10_7_0_1_0_0_2_0_0 4 2125 12   3,[2]
10_7_0_1_1_0_0_0_1 4 2481 12   3,[2]   a 10, #127
10_7_0_2_1_0_0_0_0 3 83 12   2,[2]
10_7_1_0_0_0_1_0_1 4 8109 12   3,[2]   a 10, #120
10_7_2_0_0_0_0_0_1 3 7137 12   2,[2]   a 10, #296
10_8_0_0_0_0_0_0_2 4 818 12   3,[2]   a 10, #13
10_8_0_0_1_0_0_0_1 3 2262 12   2,[2]   a 10, #262
10_8_0_1_0_0_0_0_1 3 346 12   2,[2]   a 10, #109
10_8_0_1_1_0_0_0_0 2 154 12   1,[2]
10_9_0_0_0_0_0_0_1 2 265 12   1,[2]   a 10, #43
10_0_0_0_6_0_2_0_2 13 125 13   12,[2]
10_0_0_0_8_0_2_0_0 11 876 13   10,[2]
10_0_0_1_5_0_4_0_0 12 1836 13   11,[2]
10_0_0_2_4_0_4_0_0 12 2826 13   11,[2]
10_0_0_2_5_0_2_0_1 12 1470 13   11,[2]
10_0_0_2_6_0_2_0_0 11 3091 13   10,[2]
10_0_0_2_8_0_0_0_0 10 657 13   9,[2]
10_0_0_3_3_0_2_0_2 13 406 13   12,[2]
10_0_0_3_3_0_4_0_0 12 2284 13   11,[2]
10_0_0_3_4_0_0_0_3 13 66 13   12,[2]
10_0_0_3_4_0_2_0_1 12 1881 13   11,[2]
10_0_0_3_5_0_2_0_0 11 4052 13   10,[2]
10_0_0_3_7_0_0_0_0 10 525 13   9,[2]
10_0_0_4_0_0_0_0_6 16 7 13   15,[2]
10_0_0_4_0_0_6_0_0 13 58 13   12,[2]
10_0_0_4_2_0_4_0_0 12 1223 13   11,[2]
10_0_0_4_3_0_2_0_1 12 935 13   11,[2]
10_0_0_4_4_0_2_0_0 11 2717 13   10,[2]
10_0_0_4_6_0_0_0_0 10 720 13   9,[2]
10_0_0_6_4_0_0_0_0 10 453 13   9,[2]
10_0_0_7_0_0_0_0_3 13 12 13   12,[2]
10_0_0_10_0_0_0_0_0 10 55 13   10,[] Z
10_0_1_0_4_0_5_0_0 12 1147 13   11,[2]
10_0_1_0_6_0_3_0_0 11 4114 13   10,[2]
10_0_1_0_8_0_1_0_0 10 1001 13   9,[2]
10_0_1_1_2_0_5_0_1 13 1046 13   12,[2]
10_0_1_1_3_0_5_0_0 12 2673 13   11,[2]
10_0_1_1_4_0_3_0_1 12 3791 13   11,[2]
10_0_1_1_5_0_3_0_0 11 7576 13   10,[2]
10_0_1_2_1_0_5_0_1 13 620 13   12,[2]
10_0_1_2_2_0_3_0_2 13 753 13   12,[2]
10_0_1_2_2_0_5_0_0 12 2619 13   11,[2]
10_0_1_2_3_0_3_0_1 12 4802 13   11,[2]
10_0_1_2_4_0_3_0_0 11 12360 13   10,[2]
10_0_1_2_5_0_1_0_1 11 2910 13   10,[2]
10_0_1_3_1_0_3_0_2 13 442 13   12,[2]
10_0_1_3_1_0_5_0_0 12 1286 13   11,[2]
10_0_1_3_2_0_3_0_1 12 3991 13   11,[2]
10_0_1_3_4_0_1_0_1 11 4425 13   10,[2]
10_0_1_4_1_0_3_0_1 12 794 13   11,[2]
10_0_1_4_2_0_1_0_2 12 388 13   11,[2]
10_0_1_5_1_0_3_0_0 11 1556 13   10,[2]
10_0_1_5_2_0_1_0_1 11 1051 13   10,[2]
10_0_1_6_0_0_3_0_0 11 382 13   10,[2]
10_0_1_6_1_0_1_0_1 11 640 13   10,[2]
10_0_2_0_3_0_4_0_1 12 1282 13   11,[2]
10_0_2_0_4_0_4_0_0 11 4182 13   10,[2]
10_0_2_0_5_0_2_0_1 11 2720 13   10,[2]
10_0_2_0_7_0_0_0_1 10 682 13   9,[2]
10_0_2_1_1_0_6_0_0 12 446 13   11,[2]
10_0_2_1_2_0_4_0_1 12 2092 13   11,[2]
10_0_2_1_4_0_2_0_1 11 4395 13   10,[2]
10_0_2_1_5_0_2_0_0 10 15795 13   9,[2]
10_0_2_1_6_0_0_0_1 10 1023 13   9,[2]
10_0_2_2_0_0_4_0_2 13 101 13   12,[2]
10_0_2_2_1_0_4_0_1 12 1487 13   11,[2]
10_0_2_2_2_0_2_0_2 12 960 13   11,[2]
10_0_2_2_2_0_4_0_0 11 6878 13   10,[2]
10_0_2_2_3_0_2_0_1 11 7268 13   10,[2]
10_0_2_2_5_0_0_0_1 10 2250 13   9,[2]
10_0_2_3_1_0_2_0_2 12 570 13   11,[2]
10_0_2_3_1_0_4_0_0 11 3245 13   10,[2]
10_0_2_3_3_0_0_0_2 11 541 13   10,[2]
10_0_2_3_4_0_0_0_1 10 1750 13   9,[2]
10_0_2_4_0_0_2_0_2 12 177 13   11,[2]
10_0_2_4_0_0_4_0_0 11 384 13   10,[2]
10_0_2_4_1_0_2_0_1 11 1467 13   10,[2]
10_0_2_4_3_0_0_0_1 10 931 13   9,[2]
10_0_2_5_1_0_2_0_0 10 1602 13   9,[2]
10_0_3_0_2_0_3_0_2 12 260 13   11,[2]
10_0_3_0_3_0_3_0_1 11 2126 13   10,[2]
10_0_3_0_5_0_1_0_1 10 3977 13   9,[2]
10_0_3_1_1_0_3_0_2 12 293 13   11,[2]
10_0_3_1_1_0_5_0_0 11 1347 13   10,[2]
10_0_3_1_2_0_3_0_1 11 3267 13   10,[2]
10_0_3_1_3_0_1_0_2 11 541 13   10,[2]
10_0_3_1_4_0_1_0_1 10 4984 13   9,[2]
10_0_3_2_1_0_3_0_1 11 2191 13   10,[2]
10_0_3_2_2_0_1_0_2 11 1143 13   10,[2]
10_0_3_2_2_0_3_0_0 10 11384 13   9,[2]
10_0_3_2_3_0_1_0_1 10 5586 13   9,[2]
10_0_3_3_0_0_3_0_1 11 461 13   10,[2]
10_0_3_3_2_0_1_0_1 10 3260 13   9,[2]
10_0_3_4_0_0_3_0_0 10 1089 13   9,[2]
10_0_3_4_1_0_1_0_1 10 2263 13   9,[2]
10_0_3_5_0_0_1_0_1 10 206 13   9,[2]
10_0_4_0_0_0_6_0_0 11 146 13   10,[2]
10_0_4_0_3_0_2_0_1 10 4279 13   9,[2]
10_0_4_1_0_0_4_0_1 11 237 13   10,[2]
10_0_4_1_1_0_2_0_2 11 306 13   10,[2]
10_0_4_1_1_0_4_0_0 10 2170 13   9,[2]
10_0_4_1_2_0_2_0_1 10 4083 13   9,[2]
10_0_4_1_4_0_0_0_1 9 2805 13   8,[2]
10_0_4_2_1_0_2_0_1 10 1304 13   9,[2]
10_0_4_3_0_0_0_0_3 11 4 13   10,[2]
10_0_4_3_2_0_0_0_1 9 1253 13   8,[2]
10_0_4_4_0_0_2_0_0 9 633 13   8,[2]
10_0_4_5_1_0_0_0_0 8 525 13   7,[2]
10_0_5_0_0_0_5_0_0 10 227 13   9,[2]
10_0_5_0_1_0_3_0_1 10 714 13   9,[2]
10_0_5_0_2_0_1_0_2 10 284 13   9,[2]
10_0_5_0_3_0_1_0_1 9 4739 13   8,[2]
10_0_5_1_0_0_3_0_1 10 210 13   9,[2]
10_0_5_1_1_0_1_0_2 10 268 13   9,[2]
10_0_5_1_2_0_1_0_1 9 4016 13   8,[2]
10_0_5_2_1_0_1_0_1 9 1686 13   8,[2]
10_0_5_3_0_0_1_0_1 9 494 13   8,[2]
10_0_5_4_0_0_1_0_0 8 974 13   7,[2]
10_0_6_0_1_0_2_0_1 9 1876 13   8,[2]
10_0_6_0_2_0_0_0_2 9 343 13   8,[2]
10_0_6_0_3_0_0_0_1 8 1221 13   7,[2]
10_0_6_1_0_0_2_0_1 9 551 13   8,[2]
10_0_6_2_1_0_0_0_1 8 1014 13   7,[2]
10_0_7_0_0_0_3_0_0 8 911 13   7,[2]
10_0_7_0_1_0_1_0_1 8 1066 13   7,[2]
10_0_7_1_0_0_1_0_1 8 274 13   7,[2]
10_1_0_0_4_0_4_0_1 12 213 13   11,[2]
10_1_0_0_6_0_2_0_1 11 557 13   10,[2]
10_1_0_0_8_0_0_0_1 10 86 13   9,[2]
10_1_0_1_3_0_4_0_1 12 516 13   11,[2]
10_1_0_1_4_0_2_0_2 12 274 13   11,[2]
10_1_0_1_7_0_0_0_1 10 232 13   9,[2]   a' 10, #1,β
10_1_0_2_2_0_4_0_1 12 637 13   11,[2]
10_1_0_2_6_0_0_0_1 10 699 13   9,[2]   a' 10, #1, β
10_1_0_3_1_0_4_0_1 12 381 13   11,[2]
10_1_0_3_2_0_2_0_2 12 402 13   11,[2]
10_1_0_3_4_0_0_0_2 11 191 13   10,[2]
10_1_0_4_0_0_4_0_1 12 83 13   11,[2]
10_1_0_4_1_0_2_0_2 12 131 13   11,[2]
10_1_0_4_4_0_0_0_1 10 623 13   9,[2]   a' 10, #3, β
10_1_0_5_1_0_2_0_1 11 629 13   10,[2]
10_1_0_6_0_0_2_0_1 11 395 13   10,[2]
10_1_1_0_3_0_5_0_0 11 543 13   10,[2]
10_1_1_0_4_0_3_0_1 11 985 13   10,[2]
10_1_1_0_6_0_1_0_1 10 2034 13   9,[2]
10_1_1_1_2_0_5_0_0 11 813 13   10,[2]
10_1_1_1_3_0_3_0_1 11 2451 13   10,[2]
10_1_1_1_4_0_1_0_2 11 534 13   10,[2]
10_1_1_2_1_0_5_0_0 11 738 13   10,[2]