-- Main.ebs22 - 2016-01-07 -- Main.srs74 - 2015-12-22

Pseudomanifold Triangulations on 10 Vertices

Complex: 10_a_b_c_d_0_e_0_f_0_g

  • a= number of vertex links homeomorphic to the sphere
  • b= number of vertex links homeomorphic to the real projective plane
  • c= number of vertex links homeomorphic to the torus
  • d= number of vertex links homeomorphic to the Klein bottle
  • e= number of vertex links homeomorphic to the genus three nonorientable surface
  • f= number of vertex links homeomorphic to the genus four nonorientable surface
  • g= number of vertex links homeomorphic to the genus five nonorientable surface

χ - Euler characteristic of all the complexes on 10 vertices with the given vertex links.

Triangulations - The number of triangulations with the given vertex links on 10 vertices. Clicking on the link gives all of the triangulations.

minG2 - The minimum g2 over all triangulations with the given vertex links on 10 vertices. Clicking the link gives a list of the complexes which realize the minimum g2.

H1, H2, H3 - Integer homology groups of all of the triangulations with the given vertex links on 10 vertices. The homology group is trivial if blank. For H2 the shorthand n,[2] stands for the direct sum of Z/2Z and the free abelian group of rank n.

Γ - Γ is the minimum of g2 over all triangulations of a three-dimensional normal pseudomanifold with the given singular vertices. A letter in this column indicates that minG2=Γ and the proof is indicated below. A superscript ' indicates that Γ=minG2-1 and 11 vertices are needed to realize Γ.

  • a - For any subcomplex Δ' of Δ, g2(Δ) ≥ g2 (Δ'). Usually v is a vertex and Δ'=st(v), so g2(Δ) ≥ g2 (st v) = g2 (link v).
  • b - If n is the number of singular vertices, then g2 ≥ 2 χ - ( n-3 choose 3). If n-3 < 3, then the binomial coefficient is interepreted as zero.
  • c - If Δ has 8 singular vertices and m of them are Klein bottles, then g2 ≥ 2 χ - 10 + (m/3)
  • d - If Δ has 8 singular vertices and any of them are real projective planes, then g2 ≥ 2 χ - 7
  • e - If Δ has 8 singular vertices including 3 projective planes and 2 Klein bottles, then g2 ≥ 2 χ - 5
  • f - Combine a with the fact that if v and w are two vertices which do not share an edge, then g2(Δ) ≥ g2 (link v) + g2 (link w)

f-vector - A nonempty entry indicates that all possible f-vectors for complexes with the given singular vertices is known.

Except where otherwise noted, the f-vectors are characterized through h- and g-vectors by, h0=1, h4=1-χ, h3 - h1 = 2 χ, h1 ≥ f0-4, and Γ ≤ g2 ≤ (g1 +1 choose 2), where f0 is the minimum number of vertices required for a complex with the given singularities.

  • The first entry is the minimum number of vertices possible for the given singularities
  • 10 indicates that the possible f-vectors for PL-homeomorphic complexes for every complex in the group are the same and equal all possible f-vectors for that particular group of singularities
  • 10, # indicates that the possible f-vectors of complexes PL-homeomorphic to complex # equals all possible f-vectors for that group of singularities.
  • 10, #, β There is no complex with g-vector (5, Γ) for these singularities.
  • 9, # indicates that the possible f-vectors of complexes PL-homeomorphic to complex # at http://www.math.cornell.edu/~takhmejanov/pseudoManifolds.html with the same singularities equals all possible f-vectors for that group of singularities.
  • 9, #1, α There is no complex with g-vector (4,6) for these singularities.
  • 8, N# indicates that the possible f-vectors of complexes PL-homeomorphic to complex N# in "Three-Dimensional Pseudomanifolds on Eight Vertices", B. Datta and N. Nilakantan, Indian J. of Mathematics and Mathematical Sciences, 2008, equals all possible f-vectors for that group of singularities.
  • 7, The one-vertex suspension of the six-vertex triangulation of the real projective plane can be used to prove that the f-vectors of the suspension of the real projective plane has the same f-vectors as all complexes with exactly two singular vertices each with link homeomorphic to the real projective plane.
  • 5, f-vectors of three-manifolds equal all possible f-vectors of S3.

- * indicates that all complexes in this row are known to be PL-homeomorphic.

# Complex χ Triangulations minG2 H1 H2Sorted descending H3 Γ f-vector delta epsilon
  10_9_0_1_0_0_0_0_0 1 133745 6   Z Z a 8,N4      
  10_10_0_0_0_0_0_0_0_a 0 177 10 Z Z Z     *    
  10_10_0_0_0_0_0_0_0_c 0 247882 0*     Z a,b 5 *    
  10_0_0_0_10_0_0_0_0 10 43 14   9,[2]            
  10_0_0_1_9_0_0_0_0 10 67 14   9,[2]            
  10_0_0_2_8_0_0_0_0 10 657 13   9,[2]            
  10_0_0_3_7_0_0_0_0 10 525 13   9,[2]            
  10_0_0_4_6_0_0_0_0 10 720 13   9,[2]            
  10_0_0_5_5_0_0_0_0 10 218 14   9,[2]            
  10_0_0_6_4_0_0_0_0 10 453 13   9,[2]            
  10_0_0_7_3_0_0_0_0 10 2 15   9,[2]            
  10_0_1_0_8_0_1_0_0 10 1001 13   9,[2]            
  10_0_1_1_7_0_1_0_0 10 3824 12   9,[2]            
  10_0_1_2_6_0_1_0_0 10 10053 12   9,[2]            
  10_0_1_3_5_0_1_0_0 10 10635 12   9,[2]            
  10_0_1_4_4_0_1_0_0 10 8083 12   9,[2]            
  10_0_1_5_3_0_1_0_0 10 3308 12   9,[2]            
  10_0_1_6_2_0_1_0_0 10 2227 12   9,[2]            
  10_0_1_7_1_0_1_0_0 10 85 14   9,[2]            
  10_0_2_0_6_0_2_0_0 10 8500 12   9,[2]            
  10_0_2_0_7_0_0_0_1 10 682 13   9,[2]            
  10_0_2_1_5_0_2_0_0 10 15795 13   9,[2]            
  10_0_2_1_6_0_0_0_1 10 1023 13   9,[2]            
  10_0_2_2_4_0_2_0_0 10 24347 12   9,[2]            
  10_0_2_2_5_0_0_0_1 10 2250 13   9,[2]            
  10_0_2_3_3_0_2_0_0 10 20819 12   9,[2]            
  10_0_2_3_4_0_0_0_1 10 1750 13   9,[2]            
  10_0_2_4_2_0_2_0_0 10 10933 12   9,[2]            
  10_0_2_4_3_0_0_0_1 10 931 13   9,[2]            
  10_0_2_5_1_0_2_0_0 10 1602 13   9,[2]            
  10_0_2_5_2_0_0_0_1 10 972 12   9,[2]   a 10, #502      
  10_0_2_6_0_0_2_0_0 10 1124 12   9,[2]            
  10_0_2_6_1_0_0_0_1 10 89 14   9,[2]            
  10_0_3_0_4_0_3_0_0 10 13243 12   9,[2]            
  10_0_3_0_5_0_1_0_1 10 3977 13   9,[2]            
  10_0_3_0_6_0_0_0_0_0_1 10 12 15   9,[2]   a 10      
  10_0_3_1_3_0_3_0_0 10 14867 12   9,[2]            
  10_0_3_1_4_0_1_0_1 10 4984 13   9,[2]            
  10_0_3_1_5_0_0_0_0_0_1 10 5 15   9,[2]   a 10      
  10_0_3_2_2_0_3_0_0 10 11384 13   9,[2]            
  10_0_3_2_3_0_1_0_1 10 5586 13   9,[2]            
  10_0_3_2_4_0_0_0_0_0_1 10 11 15   9,[2]   a 10      
  10_0_3_3_1_0_3_0_0 10 8666 12   9,[2]            
  10_0_3_3_2_0_1_0_1 10 3260 13   9,[2]            
  10_0_3_3_3_0_0_0_0_0_1 10 5 15   9,[2]   a 10      
  10_0_3_4_0_0_3_0_0 10 1089 13   9,[2]            
  10_0_3_4_1_0_1_0_1 10 2263 13   9,[2]            
  10_0_3_4_2_0_0_0_0_0_1 10 7 15   9,[2]   a 10      
  10_0_3_5_0_0_1_0_1 10 206 13   9,[2]            
  10_0_3_5_1_0_0_0_0_0_1 10 5 15   9,[2]   a 10      
  10_0_3_6_0_0_0_0_0_0_1 10 2 15   9,[2]   a 10      
  10_0_4_0_2_0_4_0_0 10 4445 12   9,[2]            
  10_0_4_0_3_0_2_0_1 10 4279 13   9,[2]            
  10_0_4_0_4_0_0_0_2 10 371 14   9,[2]            
  10_0_4_0_4_0_1_0_0_0_1 10 21 15   9,[2]   a 10      
  10_0_4_1_1_0_4_0_0 10 2170 13   9,[2]            
  10_0_4_1_2_0_2_0_1 10 4083 13   9,[2]            
  10_0_4_1_3_0_0_0_2 10 137 14   9,[2]            
  10_0_4_1_3_0_1_0_0_0_1 10 7 15   9,[2]   a 10      
  10_0_4_2_0_0_4_0_0 10 1061 12   9,[2]            
  10_0_4_2_1_0_2_0_1 10 1304 13   9,[2]            
  10_0_4_2_2_0_0_0_2 10 344 14   9,[2]            
  10_0_4_2_2_0_1_0_0_0_1 10 1 15   9,[2]   a 10 *    
  10_0_4_3_0_0_2_0_1 10 1143 12   9,[2]   a 10, #165      
  10_0_4_3_1_0_0_0_2 10 45 14   9,[2]            
  10_0_4_3_1_0_1_0_0_0_1 10 3 15   9,[2]   a 10      
  10_0_4_4_0_0_0_0_2 10 121 14   9,[2]            
  10_0_4_4_0_0_1_0_0_0_1 10 7 15   9,[2]   a 10      
  10_0_5_0_0_0_5_0_0 10 227 13   9,[2]            
  10_0_5_0_1_0_3_0_1 10 714 13   9,[2]            
  10_0_5_0_2_0_1_0_2 10 284 13   9,[2]            
  10_0_5_0_2_0_2_0_0_0_1 10 5 15   9,[2]   a 10      
  10_0_5_0_3_0_0_0_1_0_1 10 2 15   9,[2]   a 10      
  10_0_5_1_0_0_3_0_1 10 210 13   9,[2]            
  10_0_5_1_1_0_1_0_2 10 268 13   9,[2]            
  10_0_5_1_1_0_2_0_0_0_1 10 1 15   9,[2]   a 10 *    
  10_0_5_2_0_0_1_0_2 10 32 14   9,[2]            
  10_0_6_0_0_0_2_0_2 10 45 14   9,[2]            
  10_0_6_0_0_0_3_0_0_0_1 10 3 15   9,[2]   a 10      
  10_0_6_0_1_0_0_0_3 10 6 15   9,[2]            
  10_0_6_1_0_0_0_0_3 10 6 15   9,[2]            
  10_0_6_1_0_0_1_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_1_0_0_7_0_2_0_0 10 1586 11   9,[2]            
  10_1_0_0_8_0_0_0_1 10 86 13   9,[2]            
  10_1_0_1_6_0_2_0_0 10 4184 12   9,[2]            
  10_1_0_1_7_0_0_0_1 10 232 13   9,[2]   a' 10, #1,β      
  10_1_0_2_5_0_2_0_0 10 9413 11   9,[2]            
  10_1_0_2_6_0_0_0_1 10 699 13   9,[2]   a' 10, #1, β      
  10_1_0_3_4_0_2_0_0 10 11726 11   9,[2]            
  10_1_0_3_5_0_0_0_1 10 776 12   9,[2]   a 10, #2      
  10_1_0_4_3_0_2_0_0 10 7136 11   9,[2]            
  10_1_0_4_4_0_0_0_1 10 623 13   9,[2]   a' 10, #3, β      
  10_1_0_5_2_0_2_0_0 10 2559 12   9,[2]            
  10_1_0_5_3_0_0_0_1 10 944 12   9,[2]   a 10, #4      
  10_1_0_6_1_0_2_0_0 10 2213 11   9,[2]            
  10_1_0_6_2_0_0_0_1 10 88 14   9,[2]            
  10_1_1_0_5_0_3_0_0 10 5601 12   9,[2]            
  10_1_1_0_6_0_1_0_1 10 2034 13   9,[2]            
  10_1_1_0_7_0_0_0_0_0_1 10 3 15   9,[2]   a 10      
  10_1_1_1_4_0_3_0_0 10 11024 12   9,[2]            
  10_1_1_1_5_0_1_0_1 10 4364 12   9,[2]   a 10,#1      
  10_1_1_1_6_0_0_0_0_0_1 10 5 15   9,[2]   a 10      
  10_1_1_2_3_0_3_0_0 10 15110 12   9,[2]            
  10_1_1_2_4_0_1_0_1 10 7662 12   9,[2]   a 10, #2      
  10_1_1_2_5_0_0_0_0_0_1 10 10 15   9,[2]   a 10      
  10_1_1_3_2_0_3_0_0 10 13538 12   9,[2]            
  10_1_1_3_3_0_1_0_1 10 6347 12   9,[2]   a 10, #18      
  10_1_1_3_4_0_0_0_0_0_1 10 19 15   9,[2]   a 10      
  10_1_1_4_1_0_3_0_0 10 3913 12   9,[2]            
  10_1_1_4_2_0_1_0_1 10 5510 12   9,[2]   a 10, #41      
  10_1_1_4_3_0_0_0_0_0_1 10 13 15   9,[2]   a 10      
  10_1_1_5_0_0_3_0_0 10 1151 12   9,[2]            
  10_1_1_5_1_0_1_0_1 10 1802 12   9,[2]   a 10, #33      
  10_1_1_5_2_0_0_0_0_0_1 10 2 15   9,[2]   a 10      
  10_1_1_6_0_0_1_0_1 10 72 13   9,[2]   a' 10,#2,β      
  10_1_2_0_3_0_4_0_0 10 5484 12   9,[2]            
  10_1_2_0_4_0_2_0_1 10 5533 13   9,[2]            
  10_1_2_0_5_0_0_0_2 10 488 13   9,[2]            
  10_1_2_0_5_0_1_0_0_0_1 10 43 15   9,[2]   a 10      
  10_1_2_1_2_0_4_0_0 10 4999 13   9,[2]            
  10_1_2_1_3_0_2_0_1 10 8112 12   9,[2]   a 10, #1      
  10_1_2_1_4_0_0_0_2 10 364 14   9,[2]            
  10_1_2_1_4_0_1_0_0_0_1 10 37 15   9,[2]   a 10      
  10_1_2_2_1_0_4_0_0 10 4424 11   9,[2]            
  10_1_2_2_2_0_2_0_1 10 6638 13   9,[2]   a' 10, #443,β      
  10_1_2_2_3_0_0_0_2 10 1105 13   9,[2]            
  10_1_2_2_3_0_1_0_0_0_1 10 68 15   9,[2]   a 10      
  10_1_2_3_0_0_4_0_0 10 1283 12   9,[2]            
  10_1_2_3_1_0_2_0_1 10 6093 12   9,[2]   a 10, #28      
  10_1_2_3_2_0_0_0_2 10 352 13   9,[2]            
  10_1_2_3_2_0_1_0_0_0_1 10 50 15   9,[2]   a 10      
  10_1_2_4_0_0_2_0_1 10 1056 13   9,[2]   a' 10, #455, β      
  10_1_2_4_1_0_0_0_2 10 467 13   9,[2]            
  10_1_2_4_1_0_1_0_0_0_1 10 22 15   9,[2]   a 10      
  10_1_2_5_0_0_0_0_2 10 70 13   9,[2]            
  10_1_2_5_0_0_1_0_0_0_1 10 6 15   9,[2]   a 10      
  10_1_3_0_1_0_5_0_0 10 794 13   9,[2]            
  10_1_3_0_2_0_3_0_1 10 2692 13   9,[2]            
  10_1_3_0_3_0_1_0_2 10 669 13   9,[2]            
  10_1_3_0_3_0_2_0_0_0_1 10 42 15   9,[2]   a 10      
  10_1_3_0_4_0_0_0_1_0_1 10 12 15   9,[2]   a 10      
  10_1_3_1_0_0_5_0_0 10 237 13   9,[2]            
  10_1_3_1_1_0_3_0_1 10 1402 13   9,[2]            
  10_1_3_1_2_0_1_0_2 10 900 13   9,[2]   a' 10, #534,β      
  10_1_3_1_2_0_2_0_0_0_1 10 26 15   9,[2]   a 10      
  10_1_3_1_3_0_0_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_1_3_2_0_0_3_0_1 10 922 12   9,[2]   a 10, #6      
  10_1_3_2_1_0_1_0_2 10 413 13   9,[2]            
  10_1_3_2_1_0_2_0_0_0_1 10 10 15   9,[2]   a 10      
  10_1_3_2_2_0_0_0_1_0_1 10 7 15   9,[2]   a 10      
  10_1_3_3_0_0_1_0_2 10 502 12   9,[2]   a 10, #143      
  10_1_3_3_0_0_2_0_0_0_1 10 17 15   9,[2]   a 10      
  10_1_3_3_1_0_0_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_1_3_4_0_0_0_0_1_0_1 10 8 15   9,[2]   a 10      
  10_1_4_0_0_0_4_0_1 10 134 14   9,[2]            
  10_1_4_0_1_0_2_0_2 10 159 14   9,[2]            
  10_1_4_0_1_0_3_0_0_0_1 10 7 15   9,[2]   a 10      
  10_1_4_0_2_0_0_0_3 10 12 15   9,[2]            
  10_1_4_0_2_0_1_0_1_0_1 10 3 15   9,[2]   a 10      
  10_1_4_1_0_0_2_0_2 10 48 14   9,[2]            
  10_1_4_1_1_0_0_0_3 10 17 14   9,[2]            
  10_1_4_1_1_0_1_0_1_0_1 10 6 15   9,[2]   a 10      
  10_1_4_2_0_0_0_0_3 10 1 15   9,[2]       *    
  10_1_5_0_0_0_1_0_3 10 1 15   9,[2]       *    
  10_1_5_0_0_0_2_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_2_0_0_4_0_4_0_0 10 207 14   9,[2]            
  10_2_0_0_5_0_2_0_1 10 152 14   9,[2]            
  10_2_0_0_6_0_0_0_2 10 14 14   9,[2]            
  10_2_0_0_6_0_1_0_0_0_1 10 2 15   9,[2]   a 10      
  10_2_0_1_3_0_4_0_0 10 308 13   9,[2]            
  10_2_0_1_4_0_2_0_1 10 562 14   9,[2]            
  10_2_0_1_5_0_0_0_2 10 53 14   9,[2]            
  10_2_0_1_5_0_1_0_0_0_1 10 7 15   9,[2]   a 10      
  10_2_0_2_2_0_4_0_0 10 793 12   9,[2]            
  10_2_0_2_3_0_2_0_1 10 1103 13   9,[2]   a' 10, #2,β      
  10_2_0_2_4_0_0_0_2 10 359 12   9,[2]   a,c 10, #1      
  10_2_0_2_4_0_1_0_0_0_1 10 3 15   9,[2]   a 10      
  10_2_0_3_1_0_4_0_0 10 605 12   9,[2]            
  10_2_0_3_2_0_2_0_1 10 2106 12   9,[2]   a 10, #40      
  10_2_0_3_3_0_0_0_2 10 69 14   9,[2]            
  10_2_0_3_3_0_1_0_0_0_1 10 6 15   9,[2]   a 10      
  10_2_0_4_0_0_4_0_0 10 343 12   9,[2]            
  10_2_0_4_1_0_2_0_1 10 1315 12   9,[2]   a 10, #1      
  10_2_0_4_2_0_0_0_2 10 582 12   9,[2]   a 10, #288      
  10_2_0_4_2_0_1_0_0_0_1 10 4 15   9,[2]   a 10      
  10_2_0_5_0_0_2_0_1 10 594 12   9,[2]   a 10, #27      
  10_2_0_5_1_0_0_0_2 10 311 12   9,[2]   a 10, #1      
  10_2_0_6_0_0_0_0_2 10 6 13   9,[2]   a' 10,#5,β *    
  10_2_1_0_2_0_5_0_0 10 75 14   9,[2]            
  10_2_1_0_3_0_3_0_1 10 355 14   9,[2]   d' 10, #24, β      
  10_2_1_0_4_0_1_0_2 10 109 14   9,[2]            
  10_2_1_0_4_0_2_0_0_0_1 10 21 15   9,[2]   a 10      
  10_2_1_0_5_0_0_0_1_0_1 10 3 15   9,[2]   a 10      
  10_2_1_1_1_0_5_0_0 10 92 14   9,[2]   d' 10,#3,β      
  10_2_1_1_2_0_3_0_1 10 421 14   9,[2]   d' 10,#39, β      
  10_2_1_1_3_0_1_0_2 10 232 14   9,[2]            
  10_2_1_1_3_0_2_0_0_0_1 10 11 15   9,[2]   a 10      
  10_2_1_2_0_0_5_0_0 10 68 14   9,[2]   d' 10, #2, β      
  10_2_1_2_1_0_3_0_1 10 529 13   9,[2]   d 10, #1      
  10_2_1_2_2_0_1_0_2 10 217 14   9,[2]            
  10_2_1_2_2_0_2_0_0_0_1 10 11 15   9,[2]   a 10      
  10_2_1_2_3_0_0_0_1_0_1 10 4 15   9,[2]   a 10      
  10_2_1_3_0_0_3_0_1 10 228 13   9,[2]   d 10, #28      
  10_2_1_3_1_0_1_0_2 10 113 14   9,[2]            
  10_2_1_3_1_0_2_0_0_0_1 10 13 15   9,[2]   a 10      
  10_2_1_3_2_0_0_0_1_0_1 10 2 15   9,[2]   a 10      
  10_2_1_4_0_0_1_0_2 10 39 14   9,[2]            
  10_2_1_4_0_0_2_0_0_0_1 10 4 15   9,[2]   a 10      
  10_2_1_4_1_0_0_0_1_0_1 10 3 15   9,[2]   a 10      
  10_2_2_0_0_0_6_0_0 10 13 14   9,[2]            
  10_2_2_0_1_0_4_0_1 10 79 14   9,[2]            
  10_2_2_0_2_0_2_0_2 10 121 14   9,[2]            
  10_2_2_0_2_0_3_0_0_0_1 10 4 15   9,[2]   a 10      
  10_2_2_0_3_0_0_0_3 10 3 15   9,[2]            
  10_2_2_0_3_0_1_0_1_0_1 10 4 15   9,[2]   a 10      
  10_2_2_1_0_0_4_0_1 10 83 13   9,[2]   d 10, #46      
  10_2_2_1_1_0_2_0_2 10 80 14   9,[2]            
  10_2_2_1_1_0_3_0_0_0_1 10 1 15   9,[2]   a 10 *    
  10_2_2_1_2_0_0_0_3 10 2 15   9,[2]            
  10_2_2_1_2_0_1_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_2_2_2_0_0_2_0_2 10 97 14   9,[2]            
  10_2_2_2_0_0_3_0_0_0_1 10 1 15   9,[2]   a 10 *    
  10_2_2_2_1_0_0_0_3 10 4 15   9,[2]            
  10_2_2_2_1_0_1_0_1_0_1 10 2 15   9,[2]   a 10      
  10_2_2_3_0_0_0_0_3 10 5 14   9,[2]            
  10_2_2_3_0_0_1_0_1_0_1 10 1 15   9,[2]   a 10 *    
  10_2_3_0_0_0_3_0_2 10 6 15   9,[2]            
  10_1_0_9_0_0_0_0_0 9 712 10   9,[] Z f        
  10_0_2_0_8_0_0_0_0 9 1949 12   8,[2]            
  10_0_2_1_7_0_0_0_0 9 5320 12   8,[2]            
  10_0_2_2_6_0_0_0_0 9 15996 11   8,[2]            
  10_0_2_3_5_0_0_0_0 9 8223 12   8,[2]            
  10_0_2_4_4_0_0_0_0 9 4886 12   8,[2]            
  10_0_2_5_3_0_0_0_0 9 3041 12   8,[2]            
  10_0_2_6_2_0_0_0_0 9 4543 11   8,[2]            
  10_0_2_7_1_0_0_0_0 9 16 14   8,[2]            
  10_0_3_0_6_0_1_0_0 9 11659 12   8,[2]            
  10_0_3_1_5_0_1_0_0 9 31459 12   8,[2]            
  10_0_3_2_4_0_1_0_0 9 38699 12   8,[2]            
  10_0_3_3_3_0_1_0_0 9 19789 12   8,[2]            
  10_0_3_4_2_0_1_0_0 9 6845 12   8,[2]            
  10_0_3_5_1_0_1_0_0 9 2558 12   8,[2]            
  10_0_3_6_0_0_1_0_0 9 3483 11   8,[2]            
  10_0_4_0_4_0_2_0_0 9 22467 12   8,[2]            
  10_0_4_0_5_0_0_0_1 9 2117 12   8,[2]   a 10, #1715      
  10_0_4_1_3_0_2_0_0 9 34775 12   8,[2]            
  10_0_4_1_4_0_0_0_1 9 2805 13   8,[2]            
  10_0_4_2_2_0_2_0_0 9 23539 12   8,[2]            
  10_0_4_2_3_0_0_0_1 9 3527 12   8,[2]   a 10, #2312      
  10_0_4_3_1_0_2_0_0 9 6925 12   8,[2]            
  10_0_4_3_2_0_0_0_1 9 1253 13   8,[2]            
  10_0_4_4_0_0_2_0_0 9 633 13   8,[2]            
  10_0_4_4_1_0_0_0_1 9 445 12   8,[2]   a 10, #388      
  10_0_4_5_0_0_0_0_1 9 9 15   8,[2]            
  10_0_5_0_2_0_3_0_0 9 9484 12   8,[2]            
  10_0_5_0_3_0_1_0_1 9 4739 13   8,[2]            
  10_0_5_0_4_0_0_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_0_5_1_1_0_3_0_0 9 5870 12   8,[2]            
  10_0_5_1_2_0_1_0_1 9 4016 13   8,[2]            
  10_0_5_1_3_0_0_0_0_0_1 9 4 15   8,[2]   a 10      
  10_0_5_2_0_0_3_0_0 9 2213 12   8,[2]            
  10_0_5_2_1_0_1_0_1 9 1686 13   8,[2]            
  10_0_5_2_2_0_0_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_0_5_3_0_0_1_0_1 9 494 13   8,[2]            
  10_0_5_3_1_0_0_0_0_0_1 9 5 15   8,[2]   a 10      
  10_0_6_0_0_0_4_0_0 9 552 12   8,[2]            
  10_0_6_0_1_0_2_0_1 9 1876 13   8,[2]            
  10_0_6_0_2_0_0_0_2 9 343 13   8,[2]            
  10_0_6_0_2_0_1_0_0_0_1 9 3 15   8,[2]   a 10      
  10_0_6_1_0_0_2_0_1 9 551 13   8,[2]            
  10_0_6_1_1_0_0_0_2 9 39 14   8,[2]            
  10_0_6_1_1_0_1_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_0_6_2_0_0_0_0_2 9 5 15   8,[2]            
  10_0_7_0_0_0_1_0_2 9 75 14   8,[2]            
  10_0_7_0_0_0_2_0_0_0_1 9 3 15   8,[2]   a 10      
  10_1_0_0_9_0_0_0_0 9 447 10   8,[2]   f        
  10_1_0_1_8_0_0_0_0 9 1743 10   8,[2]   f        
  10_1_0_2_7_0_0_0_0 9 2967 11   8,[2]            
  10_1_0_3_6_0_0_0_0 9 5697 10   8,[2]   f        
  10_1_0_4_5_0_0_0_0 9 1005 11   8,[2]            
  10_1_0_5_4_0_0_0_0 9 7808 10   8,[2]   f        
  10_1_0_6_3_0_0_0_0 9 263 11   8,[2]            
  10_1_1_0_7_0_1_0_0 9 5128 11   8,[2]            
  10_1_1_1_6_0_1_0_0 9 20132 11   8,[2]            
  10_1_1_2_5_0_1_0_0 9 38543 10   8,[2]            
  10_1_1_3_4_0_1_0_0 9 21720 11   8,[2]            
  10_1_1_4_3_0_1_0_0 9 15013 11   8,[2]            
  10_1_1_5_2_0_1_0_0 9 13397 11   8,[2]            
  10_1_1_6_1_0_1_0_0 9 14302 9   8,[2]   a 10      
  10_1_1_7_0_0_1_0_0 9 41 12   8,[2]            
  10_1_2_0_5_0_2_0_0 9 22280 11   8,[2]            
  10_1_2_0_6_0_0_0_1 9 2088 12   8,[2]   a 10,#3      
  10_1_2_1_4_0_2_0_0 9 55410 11   8,[2]            
  10_1_2_1_5_0_0_0_1 9 4758 12   8,[2]   a 10, #4      
  10_1_2_2_3_0_2_0_0 9 56995 11   8,[2]            
  10_1_2_2_4_0_0_0_1 9 10018 12   8,[2]   a 10, #29      
  10_1_2_3_2_0_2_0_0 9 27665 11   8,[2]            
  10_1_2_3_3_0_0_0_1 9 3363 13   8,[2]   a' 10, #248,β      
  10_1_2_4_1_0_2_0_0 9 5678 12   8,[2]            
  10_1_2_4_2_0_0_0_1 9 2425 12   8,[2]   a 10, #5      
  10_1_2_5_0_0_2_0_0 9 10947 10   8,[2]            
  10_1_2_5_1_0_0_0_1 9 291 13   8,[2]            
  10_1_2_6_0_0_0_0_1 9 17 14   8,[2]            
  10_1_3_0_3_0_3_0_0 9 24509 11   8,[2]            
  10_1_3_0_4_0_1_0_1 9 10517 12   8,[2]   a 10, #70      
  10_1_3_0_5_0_0_0_0_0_1 9 12 15   8,[2]   a 10      
  10_1_3_1_2_0_3_0_0 9 27157 12   8,[2]            
  10_1_3_1_3_0_1_0_1 9 16559 12   8,[2]   a 10, #25      
  10_1_3_1_4_0_0_0_0_0_1 9 9 15   8,[2]   a 10      
  10_1_3_2_1_0_3_0_0 9 16413 12   8,[2]            
  10_1_3_2_2_0_1_0_1 9 12819 12   8,[2]   a 10, #28      
  10_1_3_2_3_0_0_0_0_0_1 9 19 15   8,[2]   a 10      
  10_1_3_3_0_0_3_0_0 9 1883 12   8,[2]            
  10_1_3_3_1_0_1_0_1 9 6406 12   8,[2]   a 10, #48      
  10_1_3_3_2_0_0_0_0_0_1 9 12 15   8,[2]   a 10      
  10_1_3_4_0_0_1_0_1 9 228 13   8,[2]            
  10_1_3_4_1_0_0_0_0_0_1 9 2 15   8,[2]   a 10      
  10_1_4_0_1_0_4_0_0 9 3992 12   8,[2]            
  10_1_4_0_2_0_2_0_1 9 8609 12   8,[2]   a 10, #21      
  10_1_4_0_3_0_0_0_2 9 892 13   8,[2]            
  10_1_4_0_3_0_1_0_0_0_1 9 45 15   8,[2]   a 10      
  10_1_4_1_0_0_4_0_0 9 1523 12   8,[2]            
  10_1_4_1_1_0_2_0_1 9 5151 12   8,[2]   a 10, #33      
  10_1_4_1_2_0_0_0_2 9 737 14   8,[2]            
  10_1_4_1_2_0_1_0_0_0_1 9 21 15   8,[2]   a 10      
  10_1_4_2_0_0_2_0_1 9 1839 12   8,[2]   a 10, #21      
  10_1_4_2_1_0_0_0_2 9 372 14   8,[2]            
  10_1_4_2_1_0_1_0_0_0_1 9 11 15   8,[2]   a 10      
  10_1_4_3_0_0_0_0_2 9 37 14   8,[2]            
  10_1_4_3_0_0_1_0_0_0_1 9 5 15   8,[2]   a 10      
  10_1_5_0_0_0_3_0_1 9 535 13   8,[2]            
  10_1_5_0_1_0_1_0_2 9 694 14   8,[2]            
  10_1_5_0_1_0_2_0_0_0_1 9 17 15   8,[2]   a 10      
  10_1_5_0_2_0_0_0_1_0_1 9 6 15   8,[2]   a 10      
  10_1_5_1_0_0_1_0_2 9 108 14   8,[2]            
  10_1_6_0_0_0_0_0_3 9 7 15   8,[2]            
  10_1_6_0_0_0_1_0_1_0_1 9 6 15   8,[2]   a 10      
  10_2_0_0_6_0_2_0_0 9 1070 12   8,[2]            
  10_2_0_0_7_0_0_0_1 9 77 13   8,[2]   a' 10, #53,β      
  10_2_0_1_5_0_2_0_0 9 3786 12   8,[2]            
  10_2_0_1_6_0_0_0_1 9 382 13   8,[2]   a' 10, #242,β      
  10_2_0_2_4_0_2_0_0 9 8297 10   8,[2]   c        
  10_2_0_2_5_0_0_0_1 9 1452 12   8,[2]   a 10, #1      
  10_2_0_3_3_0_2_0_0 9 6513 11   8,[2]            
  10_2_0_3_4_0_0_0_1 9 392 13   8,[2]            
  10_2_0_4_2_0_2_0_0 9 5700 10   8,[2]            
  10_2_0_4_3_0_0_0_1 9 1114 12   8,[2]   a 10, #27      
  10_2_0_5_1_0_2_0_0 9 11781 9   8,[2]   a        
  10_2_0_5_2_0_0_0_1 9 400 12   8,[2]   a 10, #5      
  10_2_0_6_0_0_2_0_0 9 2861 9   8,[2]   a        
  10_2_0_6_1_0_0_0_1 9 13 14   8,[2]            
  10_2_1_0_4_0_3_0_0 9 4099 12   8,[2]            
  10_2_1_0_5_0_1_0_1 9 1836 12   8,[2]   a 10, #3      
  10_2_1_1_3_0_3_0_0 9 9136 12   8,[2]   d' 10, #11, β      
  10_2_1_1_4_0_1_0_1 9 5008 12   8,[2]   a 10, #18      
  10_2_1_1_5_0_0_0_0_0_1 9 11 15   8,[2]   a 10      
  10_2_1_2_2_0_3_0_0 9 7699 12   8,[2]            
  10_2_1_2_3_0_1_0_1 9 5532 12   8,[2]   a 10, #5      
  10_2_1_2_4_0_0_0_0_0_1 9 16 15   8,[2]   a 10      
  10_2_1_3_1_0_3_0_0 9 2297 12   8,[2]            
  10_2_1_3_2_0_1_0_1 9 3866 12   8,[2]   a 10, #44      
  10_2_1_3_3_0_0_0_0_0_1 9 18 15   8,[2]   a 10      
  10_2_1_4_0_0_3_0_0 9 624 13   8,[2]            
  10_2_1_4_1_0_1_0_1 9 648 12   8,[2]   a 10, #1      
  10_2_1_4_2_0_0_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_2_1_5_0_0_1_0_1 9 120 13   8,[2]   a' 10, #10,β      
  10_2_2_0_2_0_4_0_0 9 3182 12   8,[2]            
  10_2_2_0_3_0_2_0_1 9 4067 12   8,[2]   a 10, #504      
  10_2_2_0_4_0_0_0_2 9 281 13   8,[2]            
  10_2_2_0_4_0_1_0_0_0_1 9 23 15   8,[2]   a 10      
  10_2_2_1_1_0_4_0_0 9 2647 12   8,[2]            
  10_2_2_1_2_0_2_0_1 9 5624 12   8,[2]   a 10, #46      
  10_2_2_1_3_0_0_0_2 9 670 13   8,[2]            
  10_2_2_1_3_0_1_0_0_0_1 9 38 15   8,[2]   a 10      
  10_2_2_2_0_0_4_0_0 9 510 13   8,[2]            
  10_2_2_2_1_0_2_0_1 9 4304 12   8,[2]   a 10, #33      
  10_2_2_2_2_0_0_0_2 9 410 13   8,[2]            
  10_2_2_2_2_0_1_0_0_0_1 9 41 15   8,[2]   a 10      
  10_2_2_3_0_0_2_0_1 9 362 13   8,[2]            
  10_2_2_3_1_0_0_0_2 9 380 13   8,[2]            
  10_2_2_3_1_0_1_0_0_0_1 9 18 15   8,[2]   a 10      
  10_2_2_4_0_0_0_0_2 9 3 15   8,[2]            
  10_2_3_0_0_0_5_0_0 9 216 13   8,[2]            
  10_2_3_0_1_0_3_0_1 9 1161 13   8,[2]            
  10_2_3_0_2_0_1_0_2 9 476 14   8,[2]            
  10_2_3_0_2_0_2_0_0_0_1 9 22 15   8,[2]   a 10      
  10_2_3_0_3_0_0_0_1_0_1 9 6 15   8,[2]   a 10      
  10_2_3_1_0_0_3_0_1 9 386 13   8,[2]            
  10_2_3_1_1_0_1_0_2 9 272 14   8,[2]            
  10_2_3_1_1_0_2_0_0_0_1 9 5 15   8,[2]   a 10      
  10_2_3_1_2_0_0_0_1_0_1 9 1 15   8,[2]   a 10 *    
  10_2_3_2_0_0_1_0_2 9 61 14   8,[2]            
  10_2_3_2_0_0_2_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_2_4_0_0_0_2_0_2 9 34 15   8,[2]            
  10_2_4_0_0_0_3_0_0_0_1 9 1 15   8,[2]   a 10 *    
  10_2_4_0_1_0_0_0_3 9 11 15   8,[2]            
  10_2_4_0_1_0_1_0_1_0_1 9 9 15   8,[2]   a 10      
  10_2_4_1_0_0_0_0_3 9 1 15   8,[2]       *    
  10_3_0_0_3_0_4_0_0 9 27 14   8,[2]   b 10, #14      
  10_3_0_0_4_0_2_0_1 9 39 14   8,[2]   b 10, #25      
  10_3_0_0_5_0_0_0_2 9 2 15   8,[2]            
  10_3_0_1_2_0_4_0_0 9 69 14   8,[2]   b 10, #21      
  10_3_0_1_3_0_2_0_1 9 99 14   8,[2]   b 10, #17      
  10_3_0_1_4_0_0_0_2 9 6 15   8,[2]            
  10_3_0_1_4_0_1_0_0_0_1 9 5 15   8,[2]   a 10      
  10_3_0_2_1_0_4_0_0 9 25 14   8,[2]   b 10, #11      
  10_3_0_2_2_0_2_0_1 9 139 14   8,[2]   b 10, #28      
  10_3_0_2_3_0_0_0_2 9 7 15   8,[2]            
  10_3_0_2_3_0_1_0_0_0_1 9 4 15   8,[2]   a 10      
  10_3_0_3_0_0_4_0_0 9 52 14   8,[2]   b 10, #31      
  10_3_0_3_1_0_2_0_1 9 34 14   8,[2]   b 10, #10      
  10_3_0_3_2_0_0_0_2 9 8 15   8,[2]            
  10_3_0_3_2_0_1_0_0_0_1 9 2 15   8,[2]   a 10      
  10_3_0_4_0_0_2_0_1 9 3 15   8,[2]   b' 10, #1, β      
  10_3_1_0_1_0_5_0_0 9 44 14   8,[2]   b 10, #30      
  10_3_1_0_2_0_3_0_1 9 148 14   8,[2]   b 10, #17      
  10_3_1_0_3_0_1_0_2 9 19 15   8,[2]            
  10_3_1_0_3_0_2_0_0_0_1 9 2 15   8,[2]   a 10      
  10_3_1_1_0_0_5_0_0 9 20 14   8,[2]   b 10,#5      
  10_3_1_1_1_0_3_0_1 9 175 14   8,[2]   b 10, #16      
  10_3_1_1_2_0_1_0_2 9 23 15   8,[2]            
  10_3_1_1_2_0_2_0_0_0_1 9 2 15   8,[2]   a 10      
  10_3_1_2_0_0_3_0_1 9 43 14   8,[2]   b 10, #7      
  10_3_1_2_1_0_1_0_2 9 31 15   8,[2]            
  10_3_1_2_1_0_2_0_0_0_1 9 2 15   8,[2]   a 10      
  10_3_1_3_0_0_1_0_2 9 4 15   8,[2]            
  10_3_2_0_0_0_4_0_1 9 41 14   8,[2]   b 10, #13      
  10_3_2_0_1_0_2_0_2 9 17 15   8,[2]            
  10_3_2_0_2_0_0_0_3 9 1 15   8,[2]       *    
  10_3_2_1_0_0_2_0_2 9 3 15   8,[2]            
  10_3_2_1_1_0_0_0_3 9 1 15   8,[2]       *    
  10_2_0_8_0_0_0_0_0 8 10883 6   8,[] Z a,b 8,N1      
  10_0_4_0_6_0_0_0_0 8 5706 11   7,[2]            
  10_0_4_1_5_0_0_0_0 8 15194 11   7,[2]            
  10_0_4_2_4_0_0_0_0 8 29990 12   7,[2]            
  10_0_4_3_3_0_0_0_0 8 25954 10   7,[2]            
  10_0_4_4_2_0_0_0_0 8 9219 12   7,[2]            
  10_0_4_5_1_0_0_0_0 8 525 13   7,[2]            
  10_0_5_0_4_0_1_0_0 8 19240 12   7,[2]            
  10_0_5_1_3_0_1_0_0 8 31917 12   7,[2]            
  10_0_5_2_2_0_1_0_0 8 29269 11   7,[2]            
  10_0_5_3_1_0_1_0_0 8 10551 11   7,[2]            
  10_0_5_4_0_0_1_0_0 8 974 13   7,[2]            
  10_0_6_0_2_0_2_0_0 8 13305 12   7,[2]            
  10_0_6_0_3_0_0_0_1 8 1221 13   7,[2]            
  10_0_6_1_1_0_2_0_0 8 9272 12   7,[2]            
  10_0_6_1_2_0_0_0_1 8 1925 12   7,[2]   a 10, #1346      
  10_0_6_2_0_0_2_0_0 8 1898 12   7,[2]            
  10_0_6_2_1_0_0_0_1 8 1014 13   7,[2]            
  10_0_6_3_0_0_0_0_1 8 211 12   7,[2]   a 10, #160      
  10_0_7_0_0_0_3_0_0 8 911 13   7,[2]            
  10_0_7_0_1_0_1_0_1 8 1066 13   7,[2]            
  10_0_7_1_0_0_1_0_1 8 274 13   7,[2]            
  10_0_8_0_0_0_0_0_2 8 1 15   7,[2]       *    
  10_0_8_0_0_0_1_0_0_0_1 8 1 15   7,[2]   a 10 *    
  10_1_2_0_7_0_0_0_0 8 4603 11   7,[2]            
  10_1_2_1_6_0_0_0_0 8 20582 11   7,[2]            
  10_1_2_2_5_0_0_0_0 8 55001 10   7,[2]            
  10_1_2_3_4_0_0_0_0 8 29773 10   7,[2]            
  10_1_2_4_3_0_0_0_0 8 34160 10   7,[2]            
  10_1_2_5_2_0_0_0_0 8 4955 11   7,[2]            
  10_1_2_6_1_0_0_0_0 8 22 14   7,[2]            
  10_1_3_0_5_0_1_0_0 8 39438 11   7,[2]            
  10_1_3_1_4_0_1_0_0 8 101203 11   7,[2]            
  10_1_3_2_3_0_1_0_0 8 134587 11   7,[2]            
  10_1_3_3_2_0_1_0_0 8 72805 9   7,[2]   a 10, #23      
  10_1_3_4_1_0_1_0_0 8 12310 11   7,[2]            
  10_1_3_5_0_0_1_0_0 8 2164 12   7,[2]            
  10_1_4_0_3_0_2_0_0 8 57049 11   7,[2]            
  10_1_4_0_4_0_0_0_1 8 5679 12   7,[2]   a 10, #31      
  10_1_4_1_2_0_2_0_0 8 75053 11   7,[2]            
  10_1_4_1_3_0_0_0_1 8 12049 12   7,[2]   a 10, #8      
  10_1_4_2_1_0_2_0_0 8 40286 11   7,[2]            
  10_1_4_2_2_0_0_0_1 8 10059 12   7,[2]   a 10, #19      
  10_1_4_3_0_0_2_0_0 8 5235 12   7,[2]            
  10_1_4_3_1_0_0_0_1 8 2754 12   7,[2]   a 10, #3      
  10_1_4_4_0_0_0_0_1 8 459 13   7,[2]            
  10_1_5_0_1_0_3_0_0 8 13331 11   7,[2]            
  10_1_5_0_2_0_1_0_1 8 10866 12   7,[2]   a 10, #43      
  10_1_5_0_3_0_0_0_0_0_1 8 4 15   7,[2]   a 10      
  10_1_5_1_0_0_3_0_0 8 4900 12   7,[2]            
  10_1_5_1_1_0_1_0_1 8 8881 12   7,[2]   a 10, #41      
  10_1_5_1_2_0_0_0_0_0_1 8 12 15   7,[2]   a 10      
  10_1_5_2_0_0_1_0_1 8 1978 12   7,[2]   a 10, #1      
  10_1_5_2_1_0_0_0_0_0_1 8 6 15   7,[2]   a 10      
  10_1_5_3_0_0_0_0_0_0_1 8 2 15   7,[2]   a 10      
  10_1_6_0_0_0_2_0_1 8 2343 13   7,[2]   a' 10, #1,β      
  10_1_6_0_1_0_0_0_2 8 242 14   7,[2]            
  10_1_6_0_1_0_1_0_0_0_1 8 8 15   7,[2]   a 10      
  10_1_6_1_0_0_0_0_2 8 55 14   7,[2]            
  10_2_0_0_8_0_0_0_0 8 465 10   7,[2]            
  10_2_0_1_7_0_0_0_0 8 1288 12   7,[2]            
  10_2_0_2_6_0_0_0_0 8 5411 11   7,[2]            
  10_2_0_3_5_0_0_0_0 8 1908 12   7,[2]            
  10_2_0_4_4_0_0_0_0 8 20546 8   7,[2]   c        
  10_2_0_5_3_0_0_0_0 8 1507 12   7,[2]            
  10_2_1_0_6_0_1_0_0 8 8682 11   7,[2]            
  10_2_1_1_5_0_1_0_0 8 29384 11   7,[2]            
  10_2_1_2_4_0_1_0_0 8 51476 10   7,[2]            
  10_2_1_3_3_0_1_0_0 8 28443 11   7,[2]            
  10_2_1_4_2_0_1_0_0 8 20783 10   7,[2]            
  10_2_1_5_1_0_1_0_0 8 3791 12   7,[2]            
  10_2_1_6_0_0_1_0_0 8 5 15   7,[2]            
  10_2_2_0_4_0_2_0_0 8 32326 10   7,[2]            
  10_2_2_0_5_0_0_0_1 8 3475 12   7,[2]   a 10, #29      
  10_2_2_1_3_0_2_0_0 8 73750 11   7,[2]            
  10_2_2_1_4_0_0_0_1 8 11482 12   7,[2]   a 10, #66      
  10_2_2_2_2_0_2_0_0 8 68081 10   7,[2]            
  10_2_2_2_3_0_0_0_1 8 11799 12   7,[2]   a 10, #35      
  10_2_2_3_1_0_2_0_0 8 17457 11   7,[2]            
  10_2_2_3_2_0_0_0_1 8 4065 12   7,[2]   a 10,#36      
  10_2_2_4_0_0_2_0_0 8 4685 11   7,[2]            
  10_2_2_4_1_0_0_0_1 8 2650 12   7,[2]   a 10, #17      
  10_2_2_5_0_0_0_0_1 8 9 15   7,[2]            
  10_2_3_0_2_0_3_0_0 8 22217 11   7,[2]   e 10, #2      
  10_2_3_0_3_0_1_0_1 8 13619 12   7,[2]   a 10, #127      
  10_2_3_0_4_0_0_0_0_0_1 8 10 15   7,[2]   a 10      
  10_2_3_1_1_0_3_0_0 8 20501 11   7,[2]            
  10_2_3_1_2_0_1_0_1 8 20843 12   7,[2]   a 10, #85      
  10_2_3_1_3_0_0_0_0_0_1 8 60 15   7,[2]   a 10      
  10_2_3_2_0_0_3_0_0 8 4123 12   7,[2]            
  10_2_3_2_1_0_1_0_1 8 10016 12   7,[2]   a 10, #2      
  10_2_3_2_2_0_0_0_0_0_1 8 33 15   7,[2]   a 10      
  10_2_3_3_0_0_1_0_1 8 1328 13   7,[2]            
  10_2_3_3_1_0_0_0_0_0_1 8 5 15   7,[2]   a 10      
  10_2_4_0_0_0_4_0_0 8 1264 12   7,[2]            
  10_2_4_0_1_0_2_0_1 8 6666 12   7,[2]   a 10, #18      
  10_2_4_0_2_0_0_0_2 8 1026 13   7,[2]            
  10_2_4_0_2_0_1_0_0_0_1 8 27 15   7,[2]   a 10      
  10_2_4_1_0_0_2_0_1 8 3015 12   7,[2]   a 10, #17      
  10_2_4_1_1_0_0_0_2 8 1315 13   7,[2]            
  10_2_4_1_1_0_1_0_0_0_1 8 32 15   7,[2]   a 10      
  10_2_4_2_0_0_0_0_2 8 220 13   7,[2]            
  10_2_4_2_0_0_1_0_0_0_1 8 16 15   7,[2]   a 10      
  10_2_5_0_0_0_1_0_2 8 324 14   7,[2]            
  10_2_5_0_0_0_2_0_0_0_1 8 3 15   7,[2]   a 10      
  10_2_5_0_1_0_0_0_1_0_1 8 1 15   7,[2]   a 10 *    
  10_3_0_0_5_0_2_0_0 8 761 13   7,[2]            
  10_3_0_0_6_0_0_0_1 8 92 13   7,[2]   b' 10,#33,β      
  10_3_0_1_4_0_2_0_0 8 2593 12   7,[2]   b 10. #5      
  10_3_0_1_5_0_0_0_1 8 422 13   7,[2]            
  10_3_0_2_3_0_2_0_0 8 3563 12   7,[2]   b 10, #105      
  10_3_0_2_4_0_0_0_1 8 1379 12   7,[2]   a,b 10, #78      
  10_3_0_3_2_0_2_0_0 8 1460 12   7,[2]   b 10, #18      
  10_3_0_3_3_0_0_0_1 8 247 13   7,[2]            
  10_3_0_4_1_0_2_0_0 8 2064 12   7,[2]   b 10, #500      
  10_3_0_4_2_0_0_0_1 8 1147 12   7,[2]   a,b 10, #57      
  10_3_0_5_0_0_2_0_0 8 86 13   7,[2]            
  10_3_0_5_1_0_0_0_1 8 1 15   7,[2]       *    
  10_3_1_0_3_0_3_0_0 8 3323 12   7,[2]   b 10, #10      
  10_3_1_0_4_0_1_0_1 8 1767 13   7,[2]            
  10_3_1_1_2_0_3_0_0 8 5949 12   7,[2]   b 10, #1377      
  10_3_1_1_3_0_1_0_1 8 4556 13   7,[2]            
  10_3_1_1_4_0_0_0_0_0_1 8 27 15   7,[2]   a,b 10      
  10_3_1_2_1_0_3_0_0 8 3667 12   7,[2]   b 10, #107      
  10_3_1_2_2_0_1_0_1 8 3068 13   7,[2]            
  10_3_1_2_3_0_0_0_0_0_1 8 15 15   7,[2]   a 10      
  10_3_1_3_0_0_3_0_0 8 895 12   7,[2]   b 10, #81      
  10_3_1_3_1_0_1_0_1 8 1017 13   7,[2]            
  10_3_1_3_2_0_0_0_0_0_1 8 4 15   7,[2]   a 10      
  10_3_1_4_0_0_1_0_1 8 145 13   7,[2]            
  10_3_2_0_1_0_4_0_0 8 1557 12   7,[2]   b 10, #23      
  10_3_2_0_2_0_2_0_1 8 2501 13   7,[2]            
  10_3_2_0_3_0_0_0_2 8 281 14   7,[2]            
  10_3_2_0_3_0_1_0_0_0_1 8 7 15   7,[2]   a 10      
  10_3_2_1_0_0_4_0_0 8 452 13   7,[2]            
  10_3_2_1_1_0_2_0_1 8 2583 13   7,[2]            
  10_3_2_1_2_0_0_0_2 8 519 14   7,[2]            
  10_3_2_1_2_0_1_0_0_0_1 8 59 15   7,[2]   a 10      
  10_3_2_2_0_0_2_0_1 8 508 14   7,[2]            
  10_3_2_2_1_0_0_0_2 8 164 14   7,[2]            
  10_3_2_2_1_0_1_0_0_0_1 8 22 15   7,[2]   a 10      
  10_3_2_3_0_0_0_0_2 8 36 14   7,[2]            
  10_3_3_0_0_0_3_0_1 8 287 14   7,[2]            
  10_3_3_0_1_0_1_0_2 8 216 14   7,[2]            
  10_3_3_0_1_0_2_0_0_0_1 8 15 15   7,[2]   a 10      
  10_3_3_1_0_0_1_0_2 8 172 14   7,[2]            
  10_3_3_1_0_0_2_0_0_0_1 8 16 15   7,[2]   a 10      
  10_3_3_1_1_0_0_0_1_0_1 8 11 15   7,[2]   a 10      
  10_3_3_2_0_0_0_0_1_0_1 8 4 15   7,[2]   a 10      
  10_4_0_0_2_0_4_0_0 8 10 15   7,[2]   b 10      
  10_4_0_0_3_0_2_0_1 8 35 15   7,[2]   b 10      
  10_4_0_0_4_0_0_0_2 8 3 15   7,[2]   b 10      
  10_4_0_1_1_0_4_0_0 8 14 15   7,[2]   b 10      
  10_4_0_1_2_0_2_0_1 8 46 15   7,[2]   b 10      
  10_4_0_1_3_0_0_0_2 8 7 15   7,[2]   b 10      
  10_4_0_1_3_0_1_0_0_0_1 8 3 15   7,[2]   a,b 10      
  10_4_0_2_0_0_4_0_0 8 6 15   7,[2]   b 10      
  10_4_0_2_1_0_2_0_1 8 17 15   7,[2]   b 10      
  10_4_0_2_2_0_0_0_2 8 1 15   7,[2]   b 10 *    
  10_4_0_3_0_0_2_0_1 8 3 15   7,[2]   b 10      
  10_4_0_3_1_0_0_0_2 8 2 15   7,[2]   b 10      
  10_4_1_0_0_0_5_0_0 8 2 15   7,[2]   b 10      
  10_4_1_0_1_0_3_0_1 8 43 15   7,[2]   b 10      
  10_4_1_0_2_0_1_0_2 8 8 15   7,[2]   b 10      
  10_4_1_1_0_0_3_0_1 8 13 15   7,[2]   b 10      
  10_4_1_1_1_0_1_0_2 8 7 15   7,[2]   b 10      
  10_4_2_0_0_0_2_0_2 8 2 15   7,[2]   b 10      
  10_3_0_7_0_0_0_0_0 7 3944 10   7,[] Z b        
  10_0_6_0_4_0_0_0_0 7 26805 9   6,[2]            
  10_0_6_1_3_0_0_0_0 7 14335 12   6,[2]            
  10_0_6_2_2_0_0_0_0 7 12718 11   6,[2]            
  10_0_6_3_1_0_0_0_0 7 7718 12   6,[2]            
  10_0_6_4_0_0_0_0_0 7 2018 9   6,[2]            
  10_0_7_0_2_0_1_0_0 7 19515 11   6,[2]            
  10_0_7_1_1_0_1_0_0 7 6950 12   6,[2]            
  10_0_7_2_0_0_1_0_0 7 2001 12   6,[2]            
  10_0_8_0_0_0_2_0_0 7 1254 12   6,[2]            
  10_0_8_0_1_0_0_0_1 7 693 12   6,[2]   a 10, #645      
  10_0_8_1_0_0_0_0_1 7 18 14   6,[2]            
  10_1_4_0_5_0_0_0_0 7 59973 10   6,[2]            
  10_1_4_1_4_0_0_0_0 7 103769 10   6,[2]            
  10_1_4_2_3_0_0_0_0 7 88178 10   6,[2]            
  10_1_4_3_2_0_0_0_0 7 58935 10