Tags:
view all tags
---+ Diagnostic Tests: %BEGINOVERVIEW% Welcome to the Math Support Center! _Link to:_ Main.MathTest %ENDOVERVIEW% ---++ Algebra __Combine and simplify expressions as much as possible.%BR%Solve equations for x.__ %RENDERLIST{"org" depth="2"}% ---+++ 1. %$\mbox{ \small $\frac{1}{a+b} - \frac{2a}{a^2+b^2}$ }$% * icon:see %$\mbox{ \small $\frac{1}{a+b} \cdot \frac{a-b}{a-b} - \frac{2a}{(a+b)(a-b)}$ }$% * %$\mbox{ \small $\frac{a-b}{(a+b)(a-b)} - \frac{2a}{(a+b)(a-b)}$ }$% * %$\mbox{ \small $\frac{a-b-2a}{(a+b)(a-b)}$ }$% * %$\mbox{ \small $\frac{-b-a}{(a+b)(a-b)}$ }$% * %$\mbox{ \small $\frac{-(b+a)}{(a+b)(a-b)}$ }$% * %$\mbox{ \small $\frac{-(a+b)}{(a+b)(a-b)}$ }$% * %$\mbox{ \small $\frac{-1}{(a-b)}$ }$% ---+++ 1. %$\mbox{ \small $\frac{x^2 + 2x + 1}{2x^2} \div \frac{x+1}{x+2}$ }$% =: %$\mbox{ \small $\frac{(x+1)(x+1)}{2x^2} \cdot \frac{x+2}{x+1}$ }$% =: %$\mbox{ \small $\frac{(x+1)}{2x^2} \cdot \frac{(x+2)}{1}$ }$% =: %$\mbox{ \small $\frac{(x+1)(x+2)}{2x^2}$ }$% =: %$\mbox{ \small $\frac{(x^2+3x+2)}{2x^2}$ }$% 1. %$\mbox{ \small $-\frac{a+b}{ac+bc}$ }$% =: %$\mbox{ \small $ -\frac{a+b}{(a+b)c}$ }$% =: %$\mbox{ \small $ -\frac{1}{c}$ }$% 1. %$\mbox{ \small $\frac{(2a)^3}{a^5}$ }$% =: %$\mbox{ \small $\frac{2^3a^3}{a^2a^3}$ }$% =: %$\mbox{ \small $\frac{8}{a^2}$ }$% 1. %$\mbox{ \small $(0.2a^2)^4$ }$% =: %$\mbox{ \small $(0.2)^4 \cdot (a^2)^4$ }$% =: %$\mbox{ \small $(2 \cdot .1)^4 \cdot a^{2*4}$ }$% =: %$\mbox{ \small $2^4 \cdot 10^{-4} \cdot a^{8}$ }$% =: %$\mbox{ \small $16 \cdot 10^{-4} a^{8}$ }$% =: %$\mbox{ \small $=.0016 a^{8}$ }$% 1. %$\mbox{ \small $\frac{8y^n}{-2y^{n-1}}$ }$% =: %$\mbox{ \small $\frac{8y^n}{-2y^{n-1}} \cdot \frac{y}{y}$ }$% =: %$\mbox{ \small $\frac{8(y^n) \cdot y}{-2(y^{n})} $ }$% =: %$\mbox{ \small $\frac{8 \cdot y}{-2} $ }$% =: %$\mbox{ \small $-\frac{8 \cdot y}{2} $ }$% 1. %$\mbox{ \small $\sqrt[3]{-8y^{27}}$ }$% =: %$\mbox{ \small $ \sqrt[3]{-1} \cdot \sqrt[3]{8} \cdot \sqrt[3]{y^{27}} $ }$% =: %$\mbox{ \small $ \sqrt[3]{-1} \cdot \sqrt[3]{8} \cdot y^{\frac{27}{3}}$ }$% =: %$\mbox{ \small $ -1 \cdot 2 \cdot y^{9}$ }$% =: %$\mbox{ \small $ -2 y^{9}$ }$% 1. %$\mbox{ \small $\sqrt{a^2 + b^2}$ }$% 1. %$\mbox{ \small $( \sqrt{x} + 3\sqrt{y} ) ( \sqrt{x} - \sqrt{y} )$ }$% 1. %$\mbox{ \small $x^3 - x^2 - 6x = 0$ }$% 1. %$\mbox{ \small $x^2 + 7x = -3$ }$% ---++ Trig __Answer the following questions without calculators or trig tables.%BR%\ Leave answers like %$ 53 \pi $% or %$ \sin{13^{\circ}}$% as is.__ 1. Convert: a. %$\mbox{ \small $ 30^{\circ}$ }$% to radians. a. %$\mbox{ \small $ \frac{ 3 \pi }{2} radians$ }$% to degrees. a. %$\mbox{ \small $ 127^{\circ} $ }$% to radians. 1. Evaluate: a. %$\mbox{ \small $\sin{60^{\circ}}$ }$% a. %$\mbox{ \small $\tan{\frac{3\pi}{4}}$ }$% a. %$\mbox{ \small $\sec{\frac{pi}{2}}$ }$% 1. Sketch the graph of %$\mbox{ \small $\sin{x}$ }$%%BR% (Make your vertical scale as large as possible.) 1. Given %$\mbox{ \small $\tan{\theta} = \frac{6}{7}, find \sin{\theta}$ }$% 1. Solve the following right triangle:%BR% ( _i.e._ determine missing sides and angles.) a. %$\overline{AB} = $% a. %$\overline{AC} = $% a. %$\angle{A} = $% 1. Relate to %$\mbox{ \small $\sin{ \theta } $ }$% and %$\mbox{ \small $ \cos{ \theta } $ }$% a. %$\mbox{ \small $\cos{-\theta}$ }$% a. %#$\mbox{ \small $\sin{\frac{\pi}{2} -\theta}$ }$% a. %#$\mbox{ \small $\sin{2\theta}$ }$% 1. Express in terms of %$\mbox{ \small $\sin{} and cos{}$ }$% of %$\mbox{ \small $A and B$ }$% -- Main.DickFurnas - 01 Mar 2007
Edit
|
Attach
|
Watch
|
P
rint version
|
H
istory
:
r18
|
r10
<
r9
<
r8
<
r7
|
B
acklinks
|
V
iew topic
|
Raw edit
|
More topic actions...
Topic revision: r8 - 2007-04-06
-
DickFurnas
Home
Site map
EBS web
ITO web
MH web
MSC web
Main web
Numb3rs web
PEOPLE web
Sandbox web
TWiki web
MSC Web
Create New Topic
Index
Search
Changes
Notifications
RSS Feed
Statistics
Preferences
View
Raw View
Print version
Find backlinks
History
More topic actions
Edit
Raw edit
Attach file or image
Edit topic preference settings
Set new parent
More topic actions
Account
Log In
Register User
Edit
Attach
Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.