Tags:
create new tag
view all tags
---+ Algebra Diagnostic Test %STARTINCLUDE% ---++ Algebra __Combine and simplify expressions as much as possible.%BR%Solve equations for x.__ ---+++ !!1. <latex>\mbox{\small $\frac{1}{a+b} - \frac{2a}{a^2-b^2}$}</latex> %BEGINANSWER% <latex>=\mbox{ \small $\frac{1}{b-a}$ }</latex> %SHOWWORK% <latex>\mbox{ \small $\frac{1}{a+b} - \frac{2a}{a^2-b^2}$ }</latex> <latex>=\mbox{ \small $\frac{1}{a+b} \cdot \frac{a-b}{a-b} - \frac{2a}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{a-b}{(a+b)(a-b)} - \frac{2a}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{a-b-2a}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{-b-a}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{-(b+a)}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{-(a+b)}{(a+b)(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{-1}{(a-b)}$ }</latex> <latex>=\mbox{ \small $\frac{1}{b-a}$ }</latex> %ENDANSWER% ---+++ !! 2. <latex>\mbox{ \small $\frac{x^2 + 2x + 1}{2x^2} \div \frac{x+1}{x+2}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $\frac{ x^2+3x+2 }{2x^2}$ }</latex> %SHOWWORK% <latex>\mbox{ \small $\frac{x^2 + 2x + 1}{2x^2} \div \frac{x+1}{x+2}$ }</latex> <latex>=\mbox{ \small $\frac{(x+1)(x+1)}{2x^2} \cdot \frac{x+2}{x+1}$ }</latex> <latex>=\mbox{ \small $\frac{(x+1)}{2x^2} \cdot \frac{(x+2)}{1}$ }</latex> <latex>=\mbox{ \small $\frac{(x+1)(x+2)}{2x^2}$ }</latex> <latex>=\mbox{ \small $\frac{ x^2+3x+2 }{2x^2}$ }</latex> %ENDANSWER% ---+++ !!3. <latex>\mbox{ \small $-\frac{a+b}{ac+bd}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $-\frac{a+b}{ac+bd}$ }</latex> %SHOWWORK% * Cannot be simplified. * _however,_ if we are told further that <latex>\mbox{ \small $d = c$}</latex> then we have a common factor in the denominator: * <latex>\mbox{ \small $-\frac{a+b}{ac+bd}$ }</latex> * <latex>=\mbox{ \small $-\frac{a+b}{ac+bc}$ }</latex> * <latex>=\mbox{ \small $ -\frac{(a+b)}{(a+b)c}$ }</latex> * <latex>=\mbox{ \small $ -\frac{1}{c}$ }</latex>, provided <latex>\mbox{ \small $ (a+b) \ne 0$ }</latex> %ENDANSWER% ---+++ !!4. <latex>\mbox{ \small $\frac{(2a)^3}{a^5}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $\frac{8}{a^2}$ }</latex> %SHOWWORK% <latex>=\mbox{ \small $\frac{2^3a^3}{a^2a^3}$ }</latex> <latex>=\mbox{ \small $\frac{8}{a^2}$ }</latex> %ENDANSWER% ---+++ !!5. <latex>\mbox{ \small $(0.2a^2)^4$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $=.0016 a^{8}$ }</latex> %SHOWWORK% <latex>=\mbox{ \small $(0.2)^4 \cdot (a^2)^4$ }</latex> <latex>=\mbox{ \small $(2 \cdot .1)^4 \cdot a^{2*4}$ }</latex> <latex>=\mbox{ \small $2^4 \cdot 10^{-4} \cdot a^{8}$ }</latex> <latex>=\mbox{ \small $16 \cdot 10^{-4} a^{8}$ }</latex> <latex>=\mbox{ \small $=.0016 a^{8}$ }</latex> %ENDANSWER% ---+++ !!6. <latex>\mbox{ \small $\frac{8y^n}{-2y^{n-1}}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $-\frac{8 \cdot y}{2} $ }</latex> %SHOWWORK% <latex>=\mbox{ \small $\frac{8y^n}{-2y^{n-1}} \cdot \frac{y}{y}$ }</latex> <latex>=\mbox{ \small $\frac{8(y^n) \cdot y}{-2(y^{n})} $ }</latex> <latex>=\mbox{ \small $\frac{8 \cdot y}{-2} $ }</latex> <latex>=\mbox{ \small $-\frac{8 \cdot y}{2} $ }</latex> %ENDANSWER% ---+++ !!7. <latex>\mbox{ \small $\sqrt[3]{-64y^{27}}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $ -4 y^{9}$ }</latex> %SHOWWORK% <latex>=\mbox{ \small $ \sqrt[3]{-1} \cdot \sqrt[3]{64} \cdot \sqrt[3]{y^{27}} $ }</latex> <latex>=\mbox{ \small $ \sqrt[3]{-1} \cdot \sqrt[3]{64} \cdot y^{\frac{27}{3}}$ }</latex> <latex>=\mbox{ \small $ -1 \cdot 4 \cdot y^{9}$ }</latex> <latex>=\mbox{ \small $ -4 y^{9}$ }</latex> %ENDANSWER% ---+++ !!8. <latex>\mbox{ \small $\sqrt{a^2 + b^2}$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $\sqrt{a^2 + b^2}$ }</latex> %SHOWWORK% <latex>=\mbox{ \small $\sqrt{a^2 + b^2}$ }</latex> * No _algebraic_ simplification. * _however..._ A beautiful _geometric_ simplification is possible: * <latex>\mbox{ \small $\sqrt{a^2 + b^2}$ }</latex> is the hypotenuse of the right triangle with sides <latex>a</latex> and <latex>b</latex> %ENDANSWER% ---+++ !!9. <latex>\mbox{ \small $( a + b )^3 $ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $ a^3 + 3 a^2 b + 3 a b^2 + b^3 $ }</latex> %SHOWWORK% <latex>=\mbox{ \small $( a + b ) \cdot ( a + b )^2 $ }</latex> <latex>=\mbox{ \small $( a + b ) \cdot ( a^2 + 2 a b + b^2 ) $ }</latex> <latex>=\mbox{ \small $ a ( a^2 + 2 a b + b^2 ) + b ( a^2 + 2 a b + b^2 ) $ }</latex> <latex>=\mbox{ \small $ a^3 + 2 a^2 b + a b^2 + b a^2 + 2 a b^2 + b^3 $ }</latex> <latex>=\mbox{ \small $ a^3 + 3 a^2 b + 3 a b^2 + b^3 $ }</latex> ---++++ !!Alternatively: Recall Pascal's Triangle: <pre> 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 </pre> ...in which elements in a row are the sum of the two elements in the row above it. These numbers are the _Binomial Coefficients._ <latex>\mbox{ \small $( a + b )^3 $ }</latex> is the cube of the binomial <latex>\mbox{ \small $( a + b ) $ }</latex> so the coefficients can be taken from the third row above: =1 3 3 1= and the exponents on <latex>\mbox{ \small $ a $ }</latex> start with <latex>\mbox{ \small $ 3 $ }</latex> and count down, while the exponents on <latex>\mbox{ \small $ b $ }</latex> start with <latex>\mbox{ \small $ 0 $ }</latex> and count up: <latex>=\mbox{ \small $ 1\cdot a^3b^0 + 3 \cdot a^2b^1 + 3 \cdot a^1b^2 + 1\cdot a^0b^3 $ }</latex> which simplifies to: <latex>=\mbox{ \small $ a^3 + 3 a^2 b + 3 a b^2 + b^3 $ }</latex> as previously. %ENDANSWER% ---+++ !!10. <latex>\mbox{ \small $( \sqrt{x} + 3\sqrt{y} ) ( \sqrt{x} - \sqrt{y} )$ }</latex> %BEGINANSWER% <latex>=\mbox{ \small $ x + 2 \sqrt{x \cdot y} - 3 y $ }</latex> %SHOWWORK% <latex>=\mbox{ \small $ \sqrt{x} ( \sqrt{x} - \sqrt{y} ) + 3\sqrt{y} ( \sqrt{x} - \sqrt{y} )$ }</latex> <latex>=\mbox{ \small $ ( \sqrt{x} \sqrt{x} - \sqrt{x} \sqrt{y} ) + (3\sqrt{y} \sqrt{x} - 3 \sqrt{y} \sqrt{y} )$ }</latex> <latex>=\mbox{ \small $ x - \sqrt{x} \sqrt{y} + 3\sqrt{y} \sqrt{x} - 3 y $ }</latex> <latex>=\mbox{ \small $ x + 2 \sqrt{x \cdot y} - 3 y $ }</latex> %ENDANSWER% ---+++ !!11. <latex>\mbox{ \small $x^3 - x^2 - 6x = 0$ }</latex> %BEGINANSWER% either <latex>\mbox{ \small $x=3$ }</latex> or <latex>\mbox{ \small $x=-2$ }</latex> or <latex>\mbox{ \small $x=0$ }</latex> %SHOWWORK% <latex>0 = \mbox{ \small $x^3 - x^2 - 6x $ }</latex> <latex> = \mbox{ \small $(x^2 - x - 6+)(x)$ }</latex> <latex> = \mbox{ \small $(x-3) \cdot (x+2) \cdot (x) $ }</latex> if a product is _zero_ one of its factors must be _zero_ so: either <latex>\mbox{ \small $ (x-3) = 0$ }</latex> or <latex>\mbox{ \small $ (x+2) = 0$ }</latex> or <latex>\mbox{ \small $ (x) = 0$ }</latex> and either <latex>\mbox{ \small $x=3$ }</latex> or <latex>\mbox{ \small $x=-2$ }</latex> or <latex>\mbox{ \small $x=0$ }</latex> %ENDANSWER% ---+++ !!12. <latex>\mbox{ \small $x^2 + 7x = -3$ }</latex> %BEGINANSWER% <latex> = \mbox{ \small $\frac{ -7\pm\sqrt{37} }{ 2 }$ } </latex> %SHOWWORK% <latex>-3 = \mbox{ \small $x^2 + 7x $ }</latex> <latex> 0 = \mbox{ \small $x^2 + 7x + 3 $ }</latex> <latex> x = \mbox{ \small $\frac{ -7\pm\sqrt{7^2-4 \cdot 1 \cdot 3} }{ 2 \cdot 1 }$ } </latex> <latex> = \mbox{ \small $\frac{ -7\pm\sqrt{49-12} }{ 2 }$ } </latex> <latex> = \mbox{ \small $\frac{ -7\pm\sqrt{37} }{ 2 }$ } </latex> * Rearrange so the equation is of the form: * <latex>\mbox{ \small $a x^2 + bx + c = 0$ }</latex> * and use the _Quadratic Formula:_ * <latex> x = \mbox{ \small $\frac{ -b\pm\sqrt{b^2-4ac} }{ 2a }$ } </latex> %ENDANSWER% %STOPINCLUDE% -- Main.DickFurnas - 21 Apr 2007
E
dit
|
A
ttach
|
Watch
|
P
rint version
|
H
istory
: r4
<
r3
<
r2
<
r1
|
B
acklinks
|
V
iew topic
|
Ra
w
edit
|
M
ore topic actions
Topic revision: r4 - 2009-01-26
-
DickFurnas
Home
Site map
EBS web
ITO web
MH web
MSC web
Main web
Numb3rs web
PEOPLE web
Sandbox web
TWiki web
MSC Web
Create New Topic
Index
Search
Changes
Notifications
RSS Feed
Statistics
Preferences
P
View
Raw View
Print version
Find backlinks
History
More topic actions
Edit
Raw edit
Attach file or image
Edit topic preference settings
Set new parent
More topic actions
Account
Log In
Register User
E
dit
A
ttach
Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.