Exponentials
Powers and Roots
Properties of Limits
The limit of a sum is the sum of the limits:
The limit of a product is the product of the limits:
The limit of a quotient is the quotient of the limits:
Squeeze Theorem:
AKA the "Flyswatter Theorem". Why?
Ratios of Polynomials
The limiting behavior of the ratio of two polynomials depends on the degree of the polynomials. The polynomial of higher degree "wins". If their degrees are the same, then the limit is the ratio of the leading coefficients.
Useful Inequalities
Always






Eventually

 for any
 (!) Remember this when using the Test for Divergence
New Series From Old
Multiply by a constant:
 Before

 After

Substitute an expression for x:
 Before

 After

Multiply by a power of x:
 Before

 After

Integrate:
 Before

 After

Differentiate:
 Before

 After

%INCLUDE{ConvergenceTests]]%
Tips for Series
 Often the hardest part of showing convergence or divergence of a series is the indecision: What do I believe it does? After all, you'll have a tough time showing a series converges if it doesn't!
 The limits listed in UsefulLimits can help a lot with the Test for Divergence. Together with inequalities you can often get an idea of what to try to show. If the individual terms of the series "look like" as then the series "looks like" and you will want to show it diverges, perhaps even setting up a comparison, or limit comparison with 1/n itself.
 Many limits boil down to "look like" ratios of polynomials after stripping out trig functions using the Useful Inequalities for trig functions.
 The eventual behavior that for any leads to the peculiar rule of thumb that in lots of ratios ln(n) "looks like" 1 since any positive power of n will dominate it:
 informally, "looks like" so converges
 more carefully, (eventually),
so,
which is a convergent pseries.
 DickFurnas  21 Oct 2008