Tags:
create new tag
view all tags
---+ Useful Limits %BEGINOVERVIEW% ...for working with sequences and series. %ENDOVERVIEW% %STARTINCLUDE% ---++ Exponentials <latex> \lim_{h \rightarrow 0} (1+h)^{\frac{1}{h}} = e </latex> <latex> \lim_{n \rightarrow \infty} (1+\frac{1}{n})^n = e </latex> <latex> \lim_{n \rightarrow \infty} (1-\frac{1}{n})^n = e^{-1} </latex> <latex> \lim_{n \rightarrow \infty} (1+\frac{x}{n})^n = e^x </latex> ---++ Powers and Roots <latex> \lim_{n \rightarrow \infty} \frac{1}{n^p} =0 \mbox{ if $p>0$}</latex> <latex> \lim_{n \rightarrow \infty} x^n \left \{ \begin{array}{l} \mbox{ $= 0$ if $|x| <1$} \\ \mbox{diverges if $ |x| >1 $} \end{array} \right.</latex> <latex> \lim_{n \rightarrow \infty} \frac{x^n}{n!} = 0 \mbox{ for all $x$}</latex> <latex> \lim_{n \rightarrow \infty} x^{\frac{1}{n}} = 1 \mbox{ for $x > 0$}</latex> <latex> \lim_{n \rightarrow \infty} n^{\frac{1}{n}} = 1 </latex> ---++ Properties of Limits ---+++ The limit of a sum is the sum of the limits: <latex> \lim_{n \rightarrow \infty} (a_n + b_n) = \lim_{n \rightarrow \infty} a_n + \lim_{n \rightarrow \infty} b_n </latex> ---+++ The limit of a product is the product of the limits: <latex> \lim_{n \rightarrow \infty} (a_n \cdot b_n) = \lim_{n \rightarrow \infty} a_n \cdot \lim_{n \rightarrow \infty} b_n </latex> ---+++ The limit of a quotient is the quotient of the limits: <latex> \lim_{n \rightarrow \infty} \frac{a_n}{b_n} = \frac{\lim_{n \rightarrow \infty} a_n}{\lim_{n \rightarrow \infty} b_n} </latex> ---++ Squeeze Theorem: <latex>\begin{array}{c}\mbox{If $a_n \le b_n \le c_n$ and $\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} c_n = L$} \\ \mbox{then $\lim_{n \rightarrow \infty} b_n = L$}\end{array}</latex> ---+++ AKA the "Flyswatter Theorem". Why? <latex>\begin{array}{c}\mbox{Series $b_n$ buzzes between $a_n$ and $c_n$ } \\ \mbox{$a_n$ and $c_n$ swat the buzzing at $L$ as $n \rightarrow \infty$}\end{array}</latex> :-) ---++ Ratios of Polynomials The limiting behavior of the ratio of two polynomials depends on the degree of the polynomials. The polynomial of higher degree "wins". If their degrees are the same, then the limit is the ratio of the leading coefficients. <latex> \lim_{x \rightarrow \infty} \frac{p_0 + p_1x +p_2x^2 + ... +p_nx^n}{q_0 + q_1x + q_2x^2 + ... + q_mx^m}</latex> <latex>= \lim_{x \rightarrow \infty} \frac{P(x)}{Q(x)} </latex> <latex> = \left \{ \begin{array}{l} \mbox{diverges if the degree of $P$ is larger ($m < n$).} \\ \mbox{$\frac{p_n}{q_n}$ if the degree of $P$ and $Q$ are the same ($m = n$).} \\ \mbox{ $0$ if the degree of $Q$ is larger ($m > n$).} \end{array} \right.</latex> %STOPINCLUDE% --- -- Main.DickFurnas - 16 Nov 2008
E
dit
|
A
ttach
|
Watch
|
P
rint version
|
H
istory
: r1
|
B
acklinks
|
V
iew topic
|
Ra
w
edit
|
M
ore topic actions
Topic revision: r1 - 2008-11-16
-
DickFurnas
Home
Site map
EBS web
ITO web
MH web
MSC web
Main web
Numb3rs web
PEOPLE web
Sandbox web
TWiki web
MSC Web
Create New Topic
Index
Search
Changes
Notifications
RSS Feed
Statistics
Preferences
P
P
View
Raw View
Print version
Find backlinks
History
More topic actions
Edit
Raw edit
Attach file or image
Edit topic preference settings
Set new parent
More topic actions
Account
Log In
Register User
E
dit
A
ttach
Copyright © by the contributing authors. All material on this collaboration platform is the property of the contributing authors.